
Relating speed of surface features to the speed of a jet of low-density fluid 
Richard l Garwin to: Marcia K McNutt 06/14/201008:09 PM 

Marcia, I have not received the slides. 

In any case I want to understand howapproach of the features team compares with the analysis of Paul 
Dimotakis in the following note and 1985 AIM publication . 

Dick Garwin 
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RE: Cylindrical jet of fluid into a denser fluid. 

Jonathan and Dick, I just saw this (Ca ltech Commencement today). 

To amplify (and quantify) the prev ious statement about density-ratio 
effects on flow- structure convection veloc i ties : 

Interfacial flow structure s in a shear l ayer f o rmed between two 
unbounded flow regions wi t h a high speed of VI and a low speed of U2 
convect with a speed Uc g ive n b y, 

Vc/V I (1 ... r*s"{1/2}) / (1 + s" {1/2}1 

Where r = U2/ V1 and s = rh0 2/ rhol (see Di motakis 1986, attached) . This 
relation has been valida t e d (for subsonic flow) by a large volume of 
experimen ta l data since. 

The shear layer driven by the jet core velocity, Uj, entrains ambient 
f luid as it mixes with it. Near the jet exit and near the shear l aye r 
t hat forms, the entrainment f low velocity, Ue - Uj/30, or so. so, U2/V1 
- Ue / Uj ~ r - 1 / 30. 

If the jet - core flow can be regarded a s homogeneous and rho_ j et - 0 .3 , 
we have s = rho_ wa t er / rho_ j et - 3, s o we'll have 

U1 = (I + 1.7) / ( I + 1.7 / 30) Uc - 2.7 Uc . 

It will be Uc that's discer nible in the videos, so U1 - Uj - 2.7 Uc. 

Hope thi s helps, P 

............. 
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Two-Dimensional Shear-Layer Entrainment 

Paul E. Dimolakis· 
California Institute of Technology, Pasadena, California 
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L lnlroduccton 

T HE concept of enlrainment has e~olved in recenl years 
... ith our changing perspecth'e of turbulent flo .... As a 

consequence, one of the difficulties in d iscussing this topic is 
that several possible definitions of entrainment exist at pres­
ent, nOI necessarily equi~alent, assumed either implicitly in 
discussions and analyses or operationally Ihrough particular 
choices and interpretalions of measurements in the labora­
tory. 

In the original discussions of Corrsin and Kistler, II the tur­
bulent region ... as en~isioned as circumscribed by the 
superlayer, an inlerfacial surface of a relatively simple 
topology, which marked the inslantaneous boundary between 
Ihe IUrbulenl and nonturbulcnt now. Within this superlayer, 
the turbulent region was treated as essentially homogeneous 
and isotropic. In this context, entrainment could be described 
as the flux of nonturbulent nuid across Ihe superlayer inter­
face, in turn, Ihe consequence of Ihe random diffusi~e prop­
agalion, as diclated, and augmented, by Ihe local flowfie!d , of 
the superlayer into the nonturbulent nuid. (See also related 
discussions in Refs. 22-24.) 

Entrainment by the Corrsin and Kistler mechanism has 
come to be known as "nibbling" of the irrotational fluid by 
the rotational (turbulenl) fluid. Work in the last fifteen years 
or so on the structure of turbulent shear flows suggests that 
this picture may be too simple 10 provide the conceptual basis 
for the description of entrainment of nonturbulent irrota· 
tional nuid into the turbulence. The term "gulping" has been 
coined to describe Ihe resulting suggested picture. and it now 
appears thai this process might best be described as possessing 
three main phases. which can be outlined as follows. 

Initially, flu id in the ~icinity of the vorticity-bearing nuid is 
sel in motion through the Biot-Sa~art-induced velocity fi eld. 
Note thai this phase of the process is kinematic and not dif­
fusive. Irrotalional nuid sufficiently close to the ~·ortical nuid 
... iII in fact participate in Ihe large-scale suuClUre motions long 
before il has acquired vort icity of its own . This first phase of 
entrainment oould be called induction (the term arose OUI of 
discussions with Professors A. Roshko and R. Narasimha) 
and describes largely irrotalional fluid that has slarled at the 
10'" end of the turbulent wave-number spectrum and should 
therefore be considered as part of the turbulent now. See Fig. 
I. Brown and Roshko~ identified this " entanglement" siage 
of enuainment as distincl from the subsequent phases of the 
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o~erall process. Inducted nuid. e~en though still irrotalional, 
is part of the motion in the IUrbulent region and already con­
tributes to the o~erall momentum and energy of that region. ZI 

It shou ld be emphasized thai the induction velocity should not 
be confused with the induced fX' locity correspondi", 10 the 
BiOl-Savart law and the large·scale vortIcity concentrations in 
free shear flows , or with the displacement fX'locity at large 
distances from Ihe IUrbulent region. 

Secondly, following the induction of irrotational nuid into 
the IUrbu1cnt region, a nuid element is suained until its spatial 
scale is small enough (large wa~e number) to put it within 
reach of (~ iscous) diffusive processes. In this phase. which 
could be called diaslrophy or turning (oTP09~) through (000'- ) 
some action or innuence. the irrot31ional nuid is "corrupted" 
with vorticity through Ihe action of viscosity as it cascades to 
spatial scales of the order of the viscous (Kolmogorov) 
scale A,. 

A third stage can be associaled with other possible diffusive 
processes, such as molecular mixing or heat conduction. and 
mayor may not precede the second stage, depending on the 
relative magnitude of the corresponding molecular dirrusi~ity 
to Ihat of the kinematic viscosity. This th ird stage. which 
could be called infusion, would of course be aimosl in­
dislinguishable from the diastrophy phase in the case of gas­
phase entrainment, for ... hich the values of the corresponding 
diffusion coefficienls are usually of the same order. In Ihe case 
of liquid-phase molecular mixing, however, for which 
Schmidt numbers are of the order of 103, or in the case of the 
diffusion of particulates and aerosols, for which the effective 
diffusivity is set by Brownian motion wilh Schmidt numbers 
thai can reach values of the order of IOl _106 , the corres­
ponding diffusion scale AV' which differs from the viscous 
scale by the square root of Ihe Schmidt number, i.e., 

( I) 

can be very much smaller and is the species diffusion counter­
part of the Batchelor scale. I In particular, if we are interested 
in (heroical reaclions bet ... een the entrained nuids into a tur­
bulent shear layer, this last stage of entrainment is impor-tant, 
and it is this difference between gases and liquids that can 
result in the large Schmidt number efreclS on the reaction rates 
documented recently for the fully developed two-dimensional 
shear layer between liquid-phase reactions· ·ll and gas-phase 
reactions. 19_26 

It can be seen that for a Schmidt (or Prandll) number 
substantially different from unity. as in the case of liquids or 
particulate dis(Xrsal, for example, a differenl volume fraction 
would be associated with fluid in each of the three phases. In 
particular. we would expect Ihal the ~olume fraction occupied 
by molecularly mixed nuid in a liquid would be smaller than 
the volume fraction of ~orticaJ nuid . Analogousty, depending 
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on the monitored property of interest, the corresponding 
"intermittency" would be different. 

II. Experillltlltal Oat •• nd Discussion 
Mca:;urtments by Konrad l4 in a two-dimensional, gas-phiue 

shear layer .t hiah Reynolds numben show that the entrain­
ment of n uid from tnc two freestrcams into the turbulent mix­
inglayer is not symmetric. Usin,. sm.1I aspirating probe' and 
ignoring possible correlations betwcen composition and 
velocity nllCluatlons, Konrad estimated the nUll of milled 
nuid, which he defined operationally as nuid whose composi­
tion was measurably different from that of either of the pure 
freestreams . It can be seen, on the basis of the preceding: 
discussion, thl[ wherC15 Konrad's estimates of the absolute 
villues of the entr.inmcnt nUll from each of the freestreilffiS 
correspond to the in/usion nUll and not the induclion nUll, 
which is higher, his estimate of the entrainment ratio is prob­
ably reliable and approxilnately equal to the induction ratio. 
The asymmetric entrainmenl ratio was also appreciated by J. 
Brown,' who ar,lkd for it on Inc basis of the apparent angles 
of intersection of the edges of the shear-layer turbulent region 
and those of the corresponding freest rcams. 

Confirmation of this entrainment asymmetry can also be 
found in the meuurements by Mungal and Dimotakis l ' at 
high Reynolds numbers, in a gas-phase chcmically ~acting 

shcar layer (H1 + Fl ), as well as in Ihe laser-induced 
fluorescence measuremenls in a liquid·phasc .. hemically react· 
in, shear layer in water by Koochesfahani et al. 11 at a lower 
Reynolds number and in the dilution experimeots of 
Koochesfahani and Dimotakis,I6 at a higher Reynolds 
number. 

These results may be considered surprising at first sight. In 
the absence of an imposed streamwise pressure gradient (con­
stant freestrcam velocities), the large-scale vort ical structures 
in a two-dimensional, shear-LayCT convect wilh a constant 
velocity U~ . Consequenlly, there exists a Galiian frame 
translatina II U" in which the vortices arc stationary. In this 
vonCK frame, one will observe the hiah-speed freestrcam going 
in one direc:tion with a speed UI - U~ and the low·speed 
frccstrcam aoina in the opposite direction with a speed 
U< - Uz• For equal freestream densities (P~ ~ PI)' the convec­
tion velocity is found to be approximately equal to the mean 
speed of the layer O. (UI + U I )/2. The corresponding 
frccst ream vc\ocities, in the vonC)[ rest frame, would then be 
equal to .dVl2 and - .dUI2, respectively, where 4U= U, - UI 
is the velocity differcnce across the layer. Consequently, for 
uniform-dmsity now, it would appear thai in thc vortell frame 
the two freest reams provide a symmetric environment. 

It is importan t to rccognixe that this argument is valid for I! 

remporfllly arowina shcar layer and, for equal frccstrcam den­
sities (PI - PI)' one would therefore conclude that such a layer 
will entrain equal amounts of nuid fro m the two frccstreams. 
This has been argued by G. Brown,6 who proposed that the 
entrainment ratio should be cqual to the square root of the 
freestrcam denslly ratio. 

Konrad's l. measurements at hlah Reynolds numbers io­
dicate that the entrainment ratio is a function of both the 

", 

fl,. 1 utrliltMul1lqa DuUcI 1_ httIinll I"Ktai rhO. (I ... 
rotllto.J) YdodC, field. I. eM YOI'UII fl'll_. er. .... tckd n.1d i .. 
diana vortkai ("lteO •• ) nllid. Solid lIIe In'kaM:S IIIOleotularl) laiRd 
(1LI&fI--5ttMIIWI-oa.IlIn) nllid. 

fr«stream speed ratio ,= VJ / U , and the density ratio 
' '''' PI / P, aeroS5 the shear layer. For a uniform-density shear 
la),er (5 = I) and a speed ratio of , - 0.38, Konrad mca5ured a 
volume nWl entrainment ratio of E. V,s) - 1.3. Using a high_ 
~pecd stream of helium and a low-speed stream of nitrogen, 
correspondin, to a density ratio of Pl/ P , = 7. and the same 
speed ratio of 0.38, he measured a volume nUll entrainment 
rltio of £ . (",,-) _ 3.4. It should be noted thai, for a filled_ 
$~ rat io " the ratio of the two (volume nUK) entrainment 
r.tiw, as mCisured by Konrad, is apprOllimately in the ratio 
of the square root of the density ratios, i.e., £ . {'.sd 
... £ . (,,51)- (SI / Sl) ... . consistent with the density depencknce 
of the proposed entrainment rat io oprcssion by O. Brown.' 

The preceding obscrvations suggest a functional dependence 
of the (volume) emrainment ratio E. on the density ratio 5 and 
the velocity ratio, of the form 

(2) 

The facl that a temporally growing shear layer at uniform 
density must be characteriud by a symmetric entrainment 
ratio SUlieststhat Ihe funclionf(r) in the preceding equation 
must tend to unity as the velocilY ratio, tends to unily, as has 
been araued by G. Brown.' In turn, Konrad's measurements 
at uniform density and a velocity ratio of , .. 0.38 suggest the 
value of .l\0.3g) - 1.3, in di$IJreement with G. Brown's' pro­
posal, which would predict a symmetric entrainment ratio 
under these condit ions. 

DI. Enln1iarnenl 1010 a Spatially Growinl LaYH 
The discussion of entrainment in the spatial ly growing shear 

layer is complicated by the coalescence interactions between 
the large·scale VOrtCll structures, which do not allow a steady 
now analysis of the problem. Nevertheless, Ihere is evidence in 
the Hernan and JimenezLl diaital image analysis of tile motion 
picture data of Bernal' to sUDesl that tnc coalescence interac­
tions themselves arc not rcsponsible for any significant addi. 
tional contribution to the entrainment nm. In panicular. Her. 
nan and Jimenez find that the visual area of the turbulent 
region of the uructure emeraiD, from the coalescence is very 
close to the (extrapolated) sum of the areas of the participating 
structures prior to pairing. Consequently, we are encouraaed 
to consider an appro:LLimation of entrainment as a continLtOus 
process, brieny interrupted by occasional coalescence interac­
tions. It should be noted, however, that this conjcaure is al 
variance with the sU!8estion of Winant and Browand,~ who 
araue<!. on the basis o f their fl ow visualization CKperiments in 
the two-dimensional shear layer, that the pairing process is in 
fact primarily responsible fo r entrainment. Of course, in the 
context or the precedina discussion, it should be rccolnizcd 
that the apPllent discrepancy may be semantic, in view of the 
poS5ible identification, in each casc. with a different phase (in­
duction, diUtrophy, Of mixin,) of the entrainment process. 

Keeping these i$$ues in mind. we might be able to argue foc 
entrainment in the spatial layer as follows. Consider the "th 
VOrlO at x .. in the spatially growing layer, viewed in the VOT!eJI 
rnt frame, with the splitter plate trai ling edge receding with a 
velocity - U~ and, at an instant betWetri pairings. its upstream 
and downstream nciahbors al x .. _ I and x".J' rcs»ttlively (sec 
Fit. 2). The ratto of the high-speed flui d induction veJocity ViI 

- (U,-UI) 

fit. J l.arae-sl~ .... atnl)' .... hllilldio. wlodda I. vorto ~ .. 
~Io.r ... _. 
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10 the apparent velocity U I - U, of the hlah-speed frenlTeam 
in tnt vOrtell frame will, in Itn«al. be some funct ion o f the 
dimensionless parameters of the problem. i.e., - vi , / (U, - U<) 
'" t I (r,s), and similarly for vll/ ( U< - U1) .= (1(',S). 

Thc ansatz is now proposed that the two dimcllsionless 
functions l , (r,S) and (l(r,s) are equal, Le. , 

(3) 

Note that, consistent with thc ansatz. the ratio of tnt induc­
tion velocities - VI ' I v ,.,. is cquallO the freestream velocity ralio 
in the vortex frame, i.e , (U , - U , ) / ( U, - Ud. or 
(I - r,)/(r< -r), where ', _ U,IU, is the normalized vortex 
convection velocity and r = U1IU I is the freestream speed 
ratio in the laboratory frame. 

Vorln C-y«tlo. Velocity 

To proceed, we need to evaluate the normalized vorte)( con­
vection velocity which, for equal densities (s = I), is known to 
be approximately equal to ; = (1 +r)I2, the normalized mean 
speed of the layer. On the other hand, on the basis of the X - I 
data in Brown and Roshka,l we find that the normalized con­
vcetion velocity for a density ratio s = 7 and a velocity ratio 
f = 0.38 is in the range of 0.,53O:::r,<0.56 (vs ; = 0.69 althis 
velocity ratio) . 

The vortex convection velocity can be estimated with the aid 
of the followins araument. Fo r a two-dimensional shear layer. 
and in the Galilean rest frame of the vortices, a s(aanation 
point must ellist between them, as was pointed out by Coles. 10 

Consequently, Bernoulli's equation would apply along a line 
through this point and, treating the now as approllimately 
steady alonl this line, the dynamic pressures in the two 
frentreams (in this frame) will be appro)!;imately matcl'lcd. If 
sC'COnd-orde.- differences in the static pressure across the layer 
are ignored, we then have 

(4) 

which yields the freestream velocity ratio in the frame of the 
vortices, 

1- " '1'\ 
--- ~, 
f . _f 

Solving 
obtain 

for the normalized convection velocity f. , we then 

(6) 

The resulting ellpression for the convection velocity r, is 
plOlted in Fig. 3. Note that : 

I) It is linear in the velocity rat io r. 
2) For equal densities, it prediets a convcetion velocity equal 

to the mean speed i, i.e., r, (f,S = I) =( I .. f)l2. 
3) It gives a value of f . (r .. 0.38, s_ 7) "O.S5, in good aarce­

ment with the Brown and Roshko ' X - I data at these 
conditions. 

4) The larSe structure convection velocity U, exceeds the 
mean speed of the layer (j. (U I + U2 )12 for a heavy high­
speed fluid (p, >Pl) and, conversely, is less than the mean 
speed for a lighl high-speed fluid (Pl>P I )' I.e., a heavy high­
speed fluid " drags" the vortices alol1l. 

&tmn ... mt Ibtlo 

If we now assume that the motion of the entrained nuid can 
be represented as indicated in !'"ig. 2, we can argue that the 
hiah-spccd fluid (volume) induction nU)!; should be propor· 

, 
'" " . 

., L-_~_~_.....L_~:----' 

. 0 . 2 • e . 11 ' . 0 

..... J Norm.lind ~ortn renvectlo. yrlodt, U.(f,lIIU, vs tH 
fl'ftStrn", sPftd ... 'io ,=U2I U 2. u~ I.~ (O~ to sdteted 
ulus of fnnlT". drll5lt)' .. tlo I · "1/"1' 

tional to - lIH • (x • • , - x.), the product of corresponding in­
duction velocity and the chord subtended between the nth 
vortex and its downstream nclahbor. while the low-spec:d fluid 
induct ion flux should be proportional to vn ' (x. -x._,). the 
product of the corresponding induction velocity and the chord 
subtended between the 11th vorta and its upstfrom neiahbor. 
Therefore, using Eq. (3), the volume nUK entrainment (induc­
tion) ratio E~ should be given by 

E .. U, - U, . x • • , - x. 
• U , -U2 x . X. _ I 

(7) 

Since the 1 x. I position sequence constitutes a geometric 
progression, i.e., x •• 1 ", ( I + tl x) ·x., we have, combining 
with Eq. (5), 

E,, = i"' [I + (tlx)] (8) 

where tl x is the (mean) vortex spacing to posilion ratia, which 
is a canstan! of the now (i .e .. I-x). 

The ratio fI x can be estimated using the relation suUested 
by Koochcsfahani et al. 16 Based on their cross-correlation 
measurements, these authors report a value of 

Vx ;,, 3.9(oJ.,Ix) (9) 

where 6 .. 1x is the vorticity thickness to position ratio, ex­
perimentally found to be proportional to (I - ,)/(1 + r) for 
equal densities (Pl = p, ), with thc..constant of proportionality 
in the range 0.16-0.18 (the higher value is the one rceom· 
mended by Brown and Rashko' ). If we substitute Ihe mid· 
ranae value for 6 .. l x, we have 

6 I-r 
~= 0. 17-­
x I .. r 

(10) 

where r z Uj I U, is the velocity ratio across the shear layer. 
Combinina the latter two equations yields an eKpression for 
Il x, i.e., 

( 1- r 
- .. 0.68-­
x l+r (II) 

It should be noted that even though the empirical relations, 
as given by Eqs. (9) and (10), are based on shear.layer data 
with equal frcc:stream densi ties, Konrad's flow visualization 
data suggest that ' I x is not a function of the frc:atream density 
ratio. Consequently, we aTe encouraged to act:qll Eq. (11) as 
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valid for all velocity Ollld density ralios, tvcn lholljb txpre5· 
sions (9) and (10) Irc not. 

Substilutin8 (his expression for fix in Eq. (8) then yields, for 
the entrainment ratio, 

( '-') £ . «(,$) -,>I 1+0.68-­,., (12) 

NOle that the mass fluJI: entrainment fatio E. can a150 be ob­
tained from the preceding equation, sin~c: E.,. .. £.Is, or 

( '-,) E",(r.$) -r ~ I+O.~ (Il) 

The resultina proposed (",preMioR for the (volume flux) en­
trainment ratio [Eq, (l2)J. is of the form suggested by Eq. 
(3). For equal <knsities, 

I) The entrainment ratio tends 10 unity as the velocity ratio 
lends to unity. i.e. , £(r-I,s = 1) - 1.0, in agreement wilh the 
temporally STowing sbear layer. which should approximate 
this case in the limit. 

2) 11 pre(liCfS an excess enuainment of hiJh-speed fluKi . 
3) For a velocity ratio , .. 0 .38. it predicts an entrainment 

ratio of E. = 1.31 (in good agroement with konrad's measured 
estimate of 1.3). 

4) For a density ratio of S '" 7 and a velot!ty ratio of r _ 0.38, 
it predicts an entrainment ratio of E. - 3.46 (in good agrce· 
ment with Konrad's experimental estimate of 3.'). 

The function E. (r,s) of Eq. (12) is plotled in fig . 4 V$ the 
velocity ratio r, for equal densities (s .. I), and in Fig. S V$ the 
density ratio s, for a velotily ratio r=0.38 . 

s ........ Larer GnlW'tll 

Viewil18 the overall entrainment inlO tbe layer, the induc· 
tion velocity ansall. also suues~s that the growth of the 
thickness of the layer, in the vortcx frame , should, in the 
mean, be linear in lime. In particular, the induclion nU l from 
the two fr"streams results in a growth of the area A. 

A~ .. 'h6~ (.r. d -x._;) 
between pairings , with vortex spacings temporarily constant, 
whIch we can estimate linearly by 

SUbslitutina for .4., dividing through by X. _ l ' and rearrang· 
ing lerms , we have 

where lIx is the vorlex.spacin,·to-position ratio [sec Eq. (II ») . 
Solvi lll for 61t then yields 

where 0"" {U l + U1 )12 is the mean speed of the layer. 
Transforming back to laboratory coordinates and normalizin8 
all velotities by Ul (note that t =xIU<), we have 

~ -. [-'-=-'--(, --'-=-'-) ~l x f < 2r, I +V 2x 
( IS) 

For equal densities (s _ I), the convtc:tion velocity is 
predicted to be equal to the mean speed, i.e ., r< - f - (I + r }/2, 
lhe difference inside the parentheses vanishes. and we recover 

the familiar fo n n of shear·layer growth Jsec Eq. (I0)), i.e. , 

Ii 1- f 
- = consl-­
x I+r 

(16) 

which lends credence to the a nsau of Eq. (3) and suggestS that 
f ~ /11 (f), at leasl fo r s_ 1. If the latter is also assumed to hold 
fot s'F-I, we obtain a prediction for the growth of the two­
dimensional shear layer given by 

~_f(~)[J+$'o'\_ I - s\lj 1 
x 1+"l'of. 1 + 2.9(I+r) / (1 r) 

(11) 

where Eqs. (6) and (II) have been used for r~ and fi x, 
respectively. 

The result!n, , rowth law, correspondin, to the vortioty 
(maximum slope) thickneu Ii .. l x of Brown and Roshko.' is 
ploued in fig. 6 'IS (I - f)/(I +" for s = 117, I. and 7. using the 
value of 2t .. " 0. 17 for the corresponding constant from Eq. 
(10). 

Note thai the second term in the brackets vanishes as s-I or 
r- I . Note also that if we neglect the second term in the 
brackets. which arises from Ihe upstream/ downstream asym­
metry of the spatially growin, layer. we recover the shear-

, .• r-~--;~--'-~---' 

• • 

• 

. • '-----':--L_~__':___.J 
. 0 . 2 . 4 . 8 . R ' . 0 

~-<J,.N, 

fl,. • Vohnnt ftu. entrajn .. "t f11tlo E. ". r~rntm spHd 
f _ V11U I rOl' e<1jul '_~UIl de.sHin (.J .. " I 'I .. I). 

• • 

ii 3 . 0 • ; 
• ... Z . O 

.• L-_ -L _ _ "-_~_-"_--" 

o ~ 8 8 10 

·-'rI ~ , 
Fla. 5 vota.t n.x mtr.1o .. ftlt..c1o E. n ,~ ...... 1' "110 
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layer growth law propoKd by G. Brown,. which should be 
valid for the temporally ,rowing shear layer (i.e., as ,-I). 

~-"'nr ()rIew,IIUOII 
If we could assume that the ratio o f inducted nuid nUJles 

from each of Ihe freestreams is also equal 10 the ratio o f the 
nuid nw: crossing the correspondin, (mean) visual edges of 
the shear layer, we could use Eqs. (12) and (17) to eslimate the 
anlies subtended between the upper and lower (mean visual) 
edges of the layer and the direction of the high·speed stream 
velocity vector, respectively. Alilning the x &lI is with the VI 
vector, and denoting the <:orresponding (positive) anlles of the 
high. and Iow·speed shear-layer edges by al and a~, respec­
tively, we have 

tanal 
E. (I 8.a) 

(ISb) 

where' = UJ I U I and P i$ the angle between the transverse and 
streamwise componems of Ihe low-speed stream velocity vec­
tor far from Ihe layer, i.e., laoP '" Y,IUJ • and S ... is Ihe visual 
thickness of Ihe layer. ' See Fig. 7. Conyersely, if Ihe angles 
aj ' aJ> and fJ are known or can be oblained from now 
visualiuuion dala , IhCtl Eq . ( 18) could be used 10 estimate lhe 
Yolume flu" enlrainment ratio. 

IV. Discussion 
It may be: u.seful to con5idcr some of the implications of the 

preceding arpmcnlS. The calcu lalion of both the emralnment 

ratio and the growth of the shear layer rely on an empirical 
dalUm : Ihe local large-slruClUre-to-position ratio Yx (Eq. 
{I I)), which CJlperimental eYidence suggests is independent or 
the density ral io. '· In the contCJlt of the present discussion , 
nOle lhat bolh the entrainment ralio and the growth of the 
shear layer would revert to Ihe predictions for a temporally 
,rowing shear layer if Yx - O, i.e .• if the vortical structures 
were not IlIac compared 10 x, which would result in a small 
upstream/ downstream asymmetry. A second empirical datum 
i5, of course, Ihe COnstant ~ Ihat appears in Eq. (1) used in the 
derivation of the shear-layer growth rate. 

The entrainment ratio of the spatially growin.J: layer i$ given 
by £".,fi.(1 +Yx). The density dependence (V!l) is an expres­
sion for the re latiye induction velocity rat io of the two 
free5lreams, as seen in the frame of the vo rtices (see Eq. (S)), 
and would alsO apply to a lemporaUy arowing layer. as has 
been argued by Brown.6 The second facto r, howeycr. is a 
stalement about the large-Kale structures in a spatially gtOW­
Inllayer and describes the leometric progression of their CJl­
pecled locations. While Ihe available eyidence sunesn that 
large-scale structures would also characlerize a lemporaJly 
arowlnllayer, as indicated by all compUialional results usin& 
a variety of methods. that flow would nOl poMeSS any 
uJHlream/ downsuc:am asymmetry and consequently would 
not be subject to the same argumenl. It should also be: noted 
thai, as a consequence. the induclion Yeloci ly ratio for the 
spatially growinS shear layer is nOt equal 10 the entrainment 
flw: ratio. 

From a practical standpoint, important considerations are 
implied by Ihe potentially large asymmetries in enlrainment. 
In particular , the entTainmenl rat io can be SUbstantially d if­
fertnt from unity, especially in cases of unequal densities (sec 
Figs. " and 5), which are encounrc:red in many appl ications, 
such as combu.nion and mixing that resullS from RayleiSh­
Taylor unstable inlerfaces. In particular , in the cue of 
chemically reactins flows, Ihe chemical enyironmenl dictated 
by the fluid mechanics can be subslantially different from 
what would be predicted by lurbulence models that assume 
symmetric m tTainmenl; homOlJCneous, iSOlropic eddy diffus­
jvity; and sradient transport mixing. 

Finally, it should be nOled that there is evidence to suggest 
that the dynamics of the Iwo_dimensional shear layer appear 
to depend on more lhan just the ye]ocity and density ral io of 
the freestreams. The uperimCtlts of Batt l indicate that a half­
jet (UJ I U I - 0 shear layer) wilh a tripped (Iurbuknt) initial 
boundary layer srows fQsr~,. by about 30"-, than a half·jet 
with an unlripped initial boundary layer. inierCSlingly 
enough. the e"periments of Browand and Latiso' II a velocily 
ratio U1IU, = 0.18 and of Mungal et a l. 1O II UJIU I - 0.4 SUi­
Sesl that for U, I U I ;oo!O the shear layer ,rows s{o_, if the 
high-speed boundary layers are turbulent as oppoKd to 
laminar. This behavior does nOI appear to be a Reynolds 
number eff«t. In all cases. the shear layer grows linearly with 
distance in Ihe mean (i.e .. 61XJtIn{x)J, in a way that is sen­
sitive 10 the init Ial conditions for distances downstream, which 
can be as iarSe ,,'thousands of inil ial momenlum thicknCS5CS. 
In the contul or the presenl discussion, the yQrte,,-spacing·to­
position ratio fIx andlor the constanl f of Eq. (3), are 
somehow also a function of the inilial renditions in a way that 
is not dear althis writins. 
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