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. W _  Relating speed of surface features to the speed of a jet of low-density fluid
— Richard L Garwin to: Marcia K McNutt 06/14/2010 08:09 PM

Marcia, | have not received the slides.

In any case | want to understand howapproach of the features team compares with the analysis of Paul
Dimotakis in the following note and 1985 AIAA publication.

Dick Garwin

—--- Forwarded by Richard L Garwin/Watson/Contr/IBM on 06/14/2010 08:04 PM ----

From: "Dimotakis, Paul E." <pxd@tyrvos.caltech.edu>

To: "Jonathan Katz" <katz@wuphys.wustl.edu>, Richard L Garwin/Watson/Contr/IBM@IBMUS
Date: 06/11/2010 04:58 PM

Subject: RE: Cylindrical jet of fluid into a denser fluid.

Jonathan and Dick, I just saw this (Caltech Commencement today).

To amplify (and quantify) the previous statement about density-ratio
effects on flow-structure convection velocities:

Interfacial flow structures in a shear layer formed between two
unbounded flow regions with a high speed of Ul and a low speed of U2
convect with a speed Uc given by,

Uc/Ul = (1 + r*s*{1/2}) / (1 + s™{1/2})

Where r = U2/Ul and s = rho2/rhol (see Dimotakis 1986, attached). This
relation has been validated (for subsonic flow) by a large volume of
experimental data since.

The shear layer driven by the jet core velocity, Uj, entrains ambient
fluid as it mixes with it. Near the jet exit and near the shear layver
that forms, the entrainment flow velocity, Ue ~ Uj/30, or so. So, U2/Ul
~ Ue/Uj = r ~ 1/30.

_If the jet-core flow can be regarded as homogeneous and rho jet ~ 0.3,
we have s = rho water/rho jet ~ 3, so we'll have

Ul = (1 +1.7) / (1 +1.7/30) Uc ~ 2.7 Uc
It will be Uc that's discernible in the videos, so Ul ~ Uj ~ 2.7 Uc.
Hope this helps, P

etk e e e ok o ok o e ek



Dimotakis. 1386 AlAA pdf



VOL, 24, NO. 11, NOVEMBER 1986

AlAA JOURNAL 1791

Two-Dimensional Shear-Layer Entrainment

Paul E. Dimotakis*
California Institute of Technology, Pasadena, California

It is observed experimentally (hat a spatially growing shear layer entrains an unequal amount of fluid from
each of the freestreams, resulting in a mixed fluid composition that favors the high-speed fluid. A simple argu-
ment Is proposed, based on the geometrical properties of the large-scale flow siructures of the subsonic, fully
developed, two-dimensional mixing layer, which yields the entrainment ratio and growlh of the turbulent mixing
Iayer. The predictions depend on the velocity and density ratio across the layer and are in good agreement with

measurements to date.

[. Imtroduction

HE concept of entrainment has evolved in recent years

with our changing perspective of turbulent flow. As a
consequence, one of the difficulties in discussing this topic is
that several possible definitions of entrainment exist at pres-
ent, not necessarily equivalent, assumed either implicitly in
discussions and analyses or operationally through particular
choices and interpretations of measurements in the labora-
tory.

In the original discussions of Corrsin and Kistler,! the tur-
bulent region was envisioned as circumscribed by the
superlayer, an interfacial surface of a relatively simple
topology, which marked the instantaneous boundary between
the turbulent and nonturbulent flow. Within this superlayer,
the turbulent region was treated as essentially homogeneous
and isotropic. In this context, entrainment could be described
as the flux of nonturbulent fluid across the superlayer inter-
face, in turn, the consequence of the random diffusive prop-
agation, as dictated, and augmented, by the local flowfield, of
the superlayer into the nonturbulent fluid. (See also related
discussions in Refs. 22-24.)

Entrainment by the Corrsin and Kistler mechanism has
come to be known as “‘nibbling'’ of the irrotational fluid by
the rotational (turbulent) fluid. Work in the last fifteen years
or so on the structure of turbulent shear flows suggests that
this picture may be too simple to provide the conceptual basis
for the description of entrainment of nonturbulent irrota-
tional fluid into the turbulence. The term “‘gulping'’ has been
coined to describe the resulting suggested picture, and it now
appears that this process might best be described as possessing
three main phases, which can be outlined as follows.

Initially, fluid in the vicinity of the vorticity-bearing fluid is
set in motion through the Biot-Savart-induced velocity field.
Note that this phase of the process is kinematic and not dif-
fusive. Irrotational fluid sufficiently close to the vortical fluid
will in fact participate in the large-scale structure motions long
before it has acquired vorticity of its own. This first phase of
entrainment could be called induction (the term arose out of
discussions with Professors A. Roshko and R. Narasimha)
and describes largely irrotational fluid that has started at the
low end of the turbulent wave-number spectrum and should
therefore be considered as part of the turbulent flow. See Fig.
1. Brown and Roshko? identified this “*entanglement’’ stage
of entrainment as distinct from the subsequent phases of the
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overall process. Inducted fluid, even though still irrotational,
is part of the motion in the turbulent region and already con-
tributes to the overall momentum and energy of that region.?'
It should be emphasized that the induction velocity should not
be confused with the induced velocity corresponding to the
Biot-Savart law and the large-scale vorticity concentrations in
free shear flows, or with the displacement velocity at large
distances from the turbulent region.

Secondly, following the induction of irrotational fluid into
the turbulent region, a fluid element is strained until its spatial
scale is small enough (large wave number) to put it within
reach of (viscous) diffusive processes. In this phase, which
could be called diastrophy or turning (e7p0¢7n) through (dua— )
some action or influence, the irrotational fluid is **corrupted’
with vorticity through the action of viscosity as it cascades to
spatial scales of the order of the viscous (Kolmogorov)
scale \,.

A third stage can be associated with other possible diffusive
processes, such as molecular mixing or heat conduction, and
may or may not precede the second stage, depending on the
relative magnitude of the corresponding molecular diffusivity
to that of the kinematic viscosity. This third stage, which
could be called infusion, would of course be almost in-
distinguishable from the diastrophy phase in the case of gas-
phase entrainment, for which the values of the corresponding
diffusion coefficients are usually of the same order. In the case
of liquid-phase molecular mixing, however, for which
Schmidt numbers are of the order of 10°, or in the case of the
diffusion of particulates and aerosols, for which the effective
diffusivity is set by Brownian motion with Schmidt numbers
that can reach values of the order of 10°-10%, the corres-
ponding diffusion scale A,, which differs from thé viscous
scale by the square root of the Schmidt number, i.e.,

Ap=\,-Sc—% m

can be very much smaller and is the species diffusion counter-
part of the Batchelor scale.! In particular, if we are interested
in chemical reactions between the entrained fluids into a tur-
bulent shear layer, this last stage of entrainment is important,
and it is this difference between gases and liquids that can
result in the large Schmidt number effects on the reaction rates
documented recently for the fully developed two-dimensional
shear layer between liquid-phase reactions®!® and gas-phase
reactions. '%-26

It can be seen that for a Schmidt (or Prandtl) number
substantially different from unity, as in the case of liquids or
particulate dispersal, for example, a different volume fraction
would be associated with fluid in each of the three phases. In
particular, we would expect that the volume fraction occupied
by molecularly mixed fluid in a liquid would be smaller than
the volume fraction of vortical fluid. Analogously, depending
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on the monitored property of interest, the corresponding
“‘intermittency’’ would be different.

I1. Experimental Data and Discussion

Measurements by Konrad' in a two-dimensional, gas-phase
shear layer at high Reynolds numbers show that the entrain-
ment of fluid from the two freestreams into the turbulent mix-
ing layer is not symmetric. Using a small aspirating probe” and
ignoring possible correlations between composition and
velocity fluctuations, Konrad estimated the flux of mixed
fluid, which he defined operationally as fluid whose composi-
tion was measurably different from that of either of the pure
freestreams. It can be seen, on the basis of the preceding
discussion, that whereas Konrad's estimates of the absolute
values of the entrainment flux from each of the freestreams
correspond to the infusion flux and not the induction flux,
which is higher, his estimate of the entrainment ratio is prob-
ably reliable and approximately equal to the induction ratio.
The asymmetric entrainment ratio was also appreciated by J.
Brown,” who argued for it on the basis of the apparent angles
of intersection of the edges of the shear-layer turbulent region
and those of the corresponding freestreams.

Confirmation of this entrainment asymmetry can also be
found in the measurements by Mungal and Dimotakis!® at
high Reynolds numbers, in a gas-phase chemically reacting
shear layer (H,+F,), as well as in the laser-induced
fluorescence measurements in a liquid-phase chemically react-
ing shear layer in water by Koochesfahani et al.!® at a lower
Reynolds number and in the dilution experiments of
Koochesfahani and Dimotakis,'® at a higher Reynolds
number.

These results may be considered surprising at first sight. In
the absence of an imposed streamwise pressure gradient (con-
stant freestream velocities), the large-scale vortical structures
in a two-dimensional, shear-layer convect with a constant
velocity U.. Consequently, there exists a Galilean frame
translating at U,, in which the vortices are stationary. In this
vortex frame, one will observe the high-speed freestream going
in one direction with a speed U, - U, and the low-speed
freestream going in the opposite direction with a speed
U, = U,. For equal freestream densities (o, =p,), the convec-
tion velocity is found to be approximately equal to the mean
speed of the layer U= (U, +U,)/2. The corresponding
freestream velocities, in the vortex rest frame, would then be
equal to AU/2 and — AU/2, respectively, where AU=U, - U,
is the velocity difference across the layer. Consequently, for
uniform-density flow, it would appear that in the vortex frame
the two freestreams provide a symmetric environment.

It is important to recognize that this argument is valid for a
temporally growing shear layer and, for equal freestream den-
sities (o, = p,), one would therefore conclude that such a layer
will entrain equal amounts of fluid from the two freestreams.
This has been argued by G. Brown,® who proposed that the
entrainment ratio should be equal to the square root of the
freestream density ratio,

Konrad’s'* measurements at high Reynolds numbers in-
dicate that the entrainment ratio is a function of both the

Fig. 1 Entrainment stages. Dashed lines Indicate Inducted fluid (ir-
rotational) velocity field in the vortex frame. Crosshaiched fluld in-
dicates vortical (viscous) fluld. Solid line indicates molecularly mixed
(high-Schmidt-number) fuid.
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freestream speed ratio r=U,/U, and the density ratio
5=p,/p, across the shear layer. For a uniform-density shear
layer (s=1) and a speed ratio of r=0.38, Konrad measured a
volume flux entrainment ratio of E, (r,5) = 1.3. Using a high-
speed stream of helium and a low-speed stream of nitrogen,
corresponding to a density ratio of p,/p, =7, and the same
speed ratio of 0.38, he measured a volume flux entrainment
ratio of E, (r,5)=3.4. It should be noted that, for a fixed-
speed ratio r, the ratio of the two (volume flux) entrainment
ratios, as measured by Konrad, is approximately in the ratio
of the square root of the density ratios, i.e., E,(r.5,)
+E,(r,5,)= (5,/5;)", consistent with the density dependence
of the proposed entrainment ratio expression by G. Brown.®

The preceding observations suggest a functional dependence
of the (volume) entrainment ratio E, on the density ratio s and
the velocity ratio r of the form

E,(r,s)=Vs-f(r) (2)

The fact that a temporally growing shear layer at uniform
density must be characterized by a symmetric entrainment
ratio suggests that the function f(r) in the preceding equation
must tend to unity as the velocity ratio r tends to unity, as has
been argued by G. Brown.® In turn, Konrad’s measurements
at uniform density and a velocity ratio of r=0.38 suggest the
value of f{0.38)= 1.3, in disagreement with G. Brown's® pro-
posal, which would predict a symmetric entrainment ratio
under these conditions.

III. Entrainment into a Spatially Growing Layer

The discussion of entrainment in the spatially growing shear
layer is complicated by the coalescence interactions between
the large-scale vortex structures, which do not allow a steady
flow analysis of the problem. Nevertheless, there is evidence in
the Hernan and Jimenez" digital image analysis of the motion
picture data of Bernal® to suggest that the coalescence interac-
tions themselves are not responsible for any significant addi-
tional contribution to the entrainment flux. In particular, Her-
nan and Jimenez find that the visual area of the turbulent
region of the structure emerging from the coalescence is very
close to the (extrapolated) sum of the areas of the participating
structures prior to pairing, Consequently, we are encouraged
to consider an approximation of entrainment as a continuous
process, briefly interrupted by occasional coalescence interac-
tions. It should be noted, however, that this conjecture is at
variance with the suggestion of Winant and Browand,? who
argued, on the basis of their flow visualization experiments in
the two-dimensional shear layer, that the pairing process is in
fact primarily responsible for entrainment. Of course, in the
context of the preceding discussion, it should be recognized
that the apparent discrepancy may be semantic, in view of the
possible identification, in each case, with a different phase (in-
duction, diastrophy, or mixing) of the entrainment process.

Keeping these issues in mind, we might be able to argue for
entrainment in the spatial layer as follows. Consider the nth
vortex at x,, in the spatially growing layer, viewed in the vortex
rest frame, with the splitter plate trailing edge receding with a
velocity — U, and, at an instant between pairings, its upstream
and downstream neighbors at x,_, and x,, ,, respectively (see
Fig. 2). The ratio of the high-speed fluid induction velocity u;,

(U =y) —

—u I T i
~arZ BT I

- (U~ ug)

Fig. 2 Large-structure array and induction velocitles in vortex con-
vection frame,
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to the apparent velocity U, — U, of the high-speed freestream
in the vortex frame will, in general, be some function of the
dimensionless parameters of the problem, i.e., — v, /(U, - U,)
=¢,(r,5), and similarly for v,/ (U, — U,) = &(r,5).

The ansatz is now proposed that the two dimensionless
functions ¢,(r,s) and e,(r,s) are equal, i.c.,

=14 = Up
UI -U, Uf - U,

=¢e(r,5) 3)

Note that, consistent with the ansatz, the ratio of the induc-
tion velocities — v, /v, is equal to the freestream velocity ratio
in the vortex frame, i.e, (U, -U.)/(U.—-U,), or
(1=r.)/(r.=r), where r.=U_ /U, is the normalized vortex
convection velocity and r=U,/U, is the freestream speed
ratio in the laboratory frame.

Vortex Convection Velocity

To proceed, we need to evaluate the normalized vortex con-
vection velocity which, for equal densities (s= 1), is known to
be approximately equal to 7= (1 +r)/2, the normalized mean
speed of the layer. On the other hand, on the basis of the x—z
data in Brown and Roshko,? we find that the normalized con-
vection velocity for a density ratio s=7 and a velocity ratio
r=0.38 is in the range of 0.53<r_.<0.56 (vs r=0.69 at this
velocity ratio).

The vortex convection velocity can be estimated with the aid
of the following argument. For a two-dimensional shear layer,
and in the Galilean rest frame of the vortices, a stagnation
point must exist between them, as was pointed out by Coles.'®
Consequently, Bernoulli’s equation would apply along a line
through this point and, treating the flow as approximately
steady along this line, the dynamic pressures in the two
freestreams (in this frame) will be approximately matched. If
second-order differences in the static pressure across the layer
are ignored, we then have

pi(Uy — U, ) =py(U, — Up) (4)

which yields the freestream velocity ratio in the frame of the
vortices,

1-r,
r.—r

=s* 3

Solving for the normalized convection velocity r., we then
obtain

1+rs*

Tes o

re(r,s)=

The resulting expression for the convection velocity r, is
plotted in Fig. 3. Note that:

1) It is linear in the velocity ratio r.

2) For equal densities, it predicts a convection velocity equal
to the mean speed r, i.e., r (r,s=1)=(1 +r)/2.

3) It gives a value of r (r=0.38,s=7) =0.55, in good agree-
ment with the Brown and Roshko! x—t data at these
conditions.

4) The large structure convection velocity U, exceeds the
mean speed of the layer U= (U, +U,)/2 for a heavy high-
speed fluid (o, >p,) and, conversely, is less than the mean
speed for a light high-speed fluid (o;>p,), i.e., a heavy high-
speed fluid ““drags’” the vortices along.

Entrainment Ratlo

If we now assume that the motion of the entrained fluid can
be represented as indicated in Fig. 2, we can argue that the
high-speed fluid (volume) induction flux should be propor-
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Fig. 3 Normalized vortex convection velocity U (r,s)/U; vs the
freestream speed ratio r={,/U/,. Line labels correspond to selected
values of freestream density ratio s=p,/p;.

tional to - v, *(x,,, —x,), the product of corresponding in-
duction velocity and the chord subtended between the nth
vortex and its downstream neighbor, while the low-speed fluid
induction flux should be proportional to v, - (x,—x,_,), the
product of the corresponding induction velocity and the chord
subtended between the nth vortex and its upstream ncighbor.
Therefore, using Eq. (3), the volume flux entrainment (induc-
tion) ratio E, should be given by

U=-U, xu—%,

E =
U=U, x4=Xyy

v

Q)

Since the {x,]| position sequence constitutes a geometric
progression, i.e., X,,,=(l1+0/x)-x,, we have, combining

with Eq. (5),
E,=s"[1+(/x)] (8)

where {/x is the (mean) vortex spacing to position ratio, which
is a constant of the flow (i.e., f~x).

The ratio £/x can be estimated using the relation suggested
by Koochesfahani et al.'® Based on their cross-correlation
measurements, these authors report a value of

/x=13.9(5_/x) . ©)

where 8_/x is the vorticity thickness to position ratio, ex-
perimentally found to be proportional to (1-r)/(1+r) for
equal densities (p, = p,), with the constant of proportionality
in the range 0.16-0.18 (the higher value is the one recom-
mended by Brown and Roshko®). If we substitute the mid-
range value for 8_/x, we have

a e
I
x 1+r

(10)

where r=U,/U, is the velocity ratio across the shear layer.
Combining the latter two equations yields an expression for
/x, ie.,
4 s l-r
B 1+r (1

It should be noted that even though the empirical relations,
as given by Eqs. (9) and (10), are based on shear-layer data
with equal freestream densities, Konrad’s flow visualization
data suggest that £/x is not a function of the freestream density
ratio. Consequently, we are encouraged to accept Eq. (11) as
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valid for all velocity and density ratios, even though expres-
sions (9) and (10) are not.

Substituting this expression for &x in Eq. (8) then yields, for
the entrainment ratio,

1=r
— s
E,(rs) =5 (1+o.631”) (12)

Note that the mass flux entrainment ratio £, can also be ob-
tained from the preceding equation, since E,, =E, /s, or

E, (r.s)=5""% (1 +O.68ll—::7) (13)

The resulting proposed expression for the (volume flux) en-
trainment ratio [Eq. (12)], is of the form suggested by Eq.
(3). For equal densities,

1) The entrainment ratio tends to unity as the velocity ratio
tends to unity, i.e., E(r—1,5=1)—1.0, in agreement with the
temporally growing shear layer, which should approximate
this case in the limit.

2) It predicts an excess entrainment of high-speed fluid.

3) For a velocity ratio r=0.38, it predicts an entrainment
ratio of E, =1.31 (in good agreement with Konrad’s measured
estimate of 1.3).

4) For a density ratio of =7 and a velocity ratio of r=0.38,
it predicts an entrainment ratio of E, =3.46 (in good agree-
ment with Konrad's experimental estimate of 3.4).

The function E, (r,s) of Eq. (12)is plotted in Fig. 4 vs the
velocity ratio r, for equal densities (s= 1), and in Fig. 5 vs the
density ratio s, for a velocity ratio r=0.38.

Shear-Layer Growth

Viewing the overall entrainment into the layer, the induc-
tion velocity ansatz also suggests that the growth of the
thickness of the layer, in the vortex frame, should, in the
mean, be linear in time. In particular, the induction flux from
the two freestreams results in a growth of the area 4,

Au"‘ %an(xnrl _xu—-I)

between pairings, with vortex spacings temporarily constant,
which we can estimate linearly by

Ay

"TT' E[(Ul & Ur) ‘-xlnl _xn) + (Ur_ U}){xn —X,._lil (14)
Substituting for A,, dividing through by x,_,, and rearrang-
ing terms, we have

& ¢ {

()= [@-w(1+5) + vy

where £/x is the vortex-spacing-to-position ratio [see Eq. (11)].
Solving for &/t then yields

& - Ux ]
Frlw-v-weorgy

where U= (U, +U,)/2 is the mean speed of the layer.
Transforming back to laboratory coordinates and normalizing
all velocities by U, (note that t=x/U.), we have

& 1-r I+r /x ]
?"[ r (lh 2, /140U R

c

For equal densities (s=1), the convection velocity is
predicted to be equal to the mean speed, i.e., . =F=(1+7r)/2,
the difference inside the parentheses vanishes, and we recover
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the familiar form of shear-layer growth [see Eq. (10)), i.e.,

I-r

I+r

&
— =cons! (16)
X

which lends credence to the ansatz of Eq. (3) and suggests that
e#fn(r), at least for s=1. If the latter is also assumed to hold
for s#1, we obtain a prediction for the growth of the two-
dimensional shear layer given by

5 1-r 1-s%
?=‘( 1 +s“r) ['.”w TTe290 +r)/(l-—r)] an

where Eqs. (6) and (11) have been used for r. and ¥/x,
respectively.

The resulting growth law, corresponding to the vorticity
(maximum slope) thickness §,/x of Brown and Roshko,? is
plotted in Fig. 6 vs (1 —r)/(1 +r) fors=1/7,1, and 7, using the
value of 2¢,=0.17 for the corresponding constant from Eq.
(10).

Note that the second term in the brackets vanishes as s—1 or
r—1. Note also that if we neglect the second term in the
brackets, which arises from the upstream/downstream asym-
metry of the spatially growing layer, we recover the shear-

E, Ir. 8=1]

0 konrea 1878

& 1 L 1 1
.0 2 4 .6 .8 1.0

reUasUy

Fig. 4 Volume fMux entrainment ratio E, vs freestream speed
r= U‘;!Ul for qul.l freestream densities (Sﬂplo‘rpl =1).
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Fig. 5 Volume Nux entrainment ratlo E, vs freestream density ratio
’=’:l’| fora w ratio r= U,’Ul =0.38.
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Fig. 6 Vorticity (maximum slope) thickness §_/x for density ratios
§=1/7,1, and 7, Circle and square data points from Ref. 8 (s=17, 1/7,
respectively). Triangle from Ref. 12 (s=1).
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Fig. 7 Shear-layer geometry.

layer growth law proposed by G. Brown,® which should be
valid for the temporally growing shear layer (i.e., as r—1).

Shear-Layer Orientation

If we could assume that the ratio of inducted fluid fluxes
from each of the freestreams is also equal to the ratio of the
fluid flux crossing the corresponding (mean) visual edges of
the shear layer, we could use Eqs. (12) and (17) to estimate the
angles subtended between the upper and lower (mean visual)
edges of the layer and the direction of the high-speed stream
velocity vector, respectively. Aligning the x axis with the U,
vector, and denoting the corresponding (positive) angles of the
high- and low-speed shear-layer edges by «, and a;, respec-
tively, we have

1 tanc,

—_— = F 182

r tana,+tanf ° am
5.

tang, + lana; =T"" (18b)

where r=U,/U, and B is the angle between the transverse and
streamwise components of the low-speed stream velocity vec-
tor far from the layer, i.e., tan8 = V,/U,, and §,;, is the visual
thickness of the layer.® See Fig. 7. Conversely, if the angles
@,, oy, and B are known or can be obtained from flow
visualization data, then Eq. (18) could be used to estimate the
volume flux entrainment ratio.

IV. Discussion

It may be useful to consider some of the implications of the
preceding arguments. The calculation of both the entrainment
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ratio and the growth of the shear layer rely on an empirical
datum: the local large-structure-to-position ratio &/x [Eqg.
(11)], which experimental evidence suggests is independent of
the density ratio.'* In the context of the present discussion,
note that both the entrainment ratio and the growth of the
shear layer would revert to the predictions for a temporally
growing shear layer if &x=0, i.e., if the vortical structures
were not large compared to x, which would result in a small
upstream/downstream asymmetry. A second empirical datum
is, of course, the constant ¢ that appears in Eq. (3) used in the
derivation of the shear-layer growth rate.

The entrainment ratio of the spatially growing layer is given
by E=Vs-(1 +#/x). The density dependence (Vs) is an expres-
sion for the relative induction velocity ratio of the two
freestreams, as seen in the frame of the vortices [see Eq. (5)].
and would also apply to a temporally growing layer, as has
been argued by Brown.® The second factor, however, is a
statement about the large-scale structures in a spatially grow-
ing layer and describes the geometric progression of their ex-
pected locations. While the available evidence suggests that
large-scale structures would also characterize a temporally
growing layer, as indicated by all computational results using
a variety of methods, that flow would not possess any
upstream/downstream asymmetry and consequently would
not be subject to the same argument. It should also be noted
that, as a consequence, the induction velocity ratio for the
spatially growing shear layer is not equal to the entrainment
flux ratio.

From a practical standpoint, important considerations are
implied by the potentially large asymmetries in entrainment.
In particular, the entrainment ratio can be substantially dif-
ferent from unity, especially in cases of unequal densities (see
Figs. 4 and 5), which are encountered in many applications,
such as combustion and mixing that results from Rayleigh-
Taylor unstable interfaces. In particular, in the case of
chemically reacting flows, the chemical environment dictated
by the fluid mechanics can be substantially different from
what would be predicted by turbulence models that assume
symmetric entrainment; homogeneous, isotropic eddy diffus-
ivity; and gradient transport mixing.

Finally, it should be noted that there is evidence to suggest
that the dynamics of the two-dimensional shear layer appear
to depend on more than just the velocity and density ratio of
the freestreams. The experiments of Batt? indicate that a half-
jet (U,/U, =0 shear layer) with a tripped (turbulent) initial
boundary layer grows faster, by about 30%, than a half-jet
with an untripped initial boundary layer. Interestingly
enough, the experiments of Browand and Latigo® at a velocity
ratio U,/U, =0.18 and of Mungal et al.2 at U,/U, =0.4 sug-
gest that for U,/U, #0 the shear layer grows slower if the
high-speed boundary layers are turbulent as opposed to
laminar. This behavior does not appear to be a Reynolds
number effect. In all cases, the shear layer grows linearly with
distance in the mean [i.e., 6/x#/m(x)], in a way that is sen-
sitive to the initial conditions for distances downstream, which
can be as large as thousands of initial momentum thicknesses.
In the context of the present discussion, the vortex-spacing-to-
position ratio /x and/or the constant ¢ of Eq. (3), are
somehow also a function of the initial conditions in a way that
is not clear at this writing.
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