Skip to main content
U.S. flag

An official website of the United States government

Researchers from North Carolina State University have found that urban environments increase pathogen abundance in honey bees (Apis mellifera) and reduce honey bee survival.

Researchers from North Carolina State University have found that urban environments increase pathogen abundance in honey bees (Apis mellifera) and reduce honey bee survival. The finding raises significant questions as urban areas continue to grow at the expense of rural environments, and urban beekeeping becomes more popular.

“We wanted to determine if the increased temperatures and impervious surface areas associated with urban environments have an effect on the number of pathogens bees are exposed to, and to the bees’ immune responses,” says Steve Frank, an associate professor of entomology at NC State and co-author of a paper on the work.

“We also wanted to look at both managed honey bee colonies and ‘wild’ ones, to see if that made a difference – and it did,” says David Tarpy, a professor of entomology at NC State and corresponding author on the paper.

Working with volunteers, the researchers identified 15 feral colonies, living in trees or buildings without human management, and 24 colonies managed by beekeepers in urban, suburban, and rural areas within an hour’s drive of Raleigh, N.C. The researchers collected worker bees from all of the colonies, and analyzed them to assess the bees’ immune responses and their overall “pathogen pressure.” Pathogen pressure accounts for both the types of pathogen species present and the abundance of those pathogens.

The research team found that colonies closer to urban areas and those managed by bee keepers had higher pathogen pressure.

“Overall, we found that the probability of worker [bee] survival in laboratory experiments declined three-fold in bees collected from urban environments, as compared to those collected in rural environments,” Frank says.

However, the researchers also found that immune response was not affected by urbanization.

“Since immune response is the same across environments, we think the higher pathogen pressure in urban areas is due to increased rates of transmission,” Tarpy says. “This might be because bee colonies have fewer feeding sites to choose from in urban areas, so they are interacting with more bees from other colonies. It may also be caused by higher temperatures in urban areas affecting pathogen viability or transmission somehow.”

“Feral bees expressed some immune genes at nearly twice the levels of managed bees following an immune challenge,” Frank says. The finding suggests that further study of feral bee colonies may give researchers insights that could improve honey bee management.

“Honey bees are important pollinators and play a significant role in our ecosystems and our economy,” Tarpy says. “This work is really only a starting point. Now that we know what’s happening, the next step is to begin work on understanding why it is happening and if the same negative effects of urbanization are hurting solitary, native bee species that are presumably more sensitive to their local environment.”

The paper, “Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees,” was published Nov. 4 in the journal PLOS ONE. The co-lead authors of the paper are Elsa Youngsteadt, an entomology research associate at NC State, and Holden Appler, a former graduate student at NC State. The paper was co-authored by Margarita López-Uribe, a postdoctoral researcher at NC State.

The work was supported by Agriculture and Food Research Initiative, the U.S. Department of Agriculture’s National Institute of Food and Agriculture; the North Carolina Department of Agriculture and Consumer Services; a Dean’s Enrichment Grant from the NC State College of Agriculture and Life Sciences; a gift from the North Carolina State Beekeepers Association; and by the Department of the Interior’s Southeast Climate Science Center (SE CSC).

This research was partially funded by these two SE CSC projects:

• Tree Eaters: Predicting the response of herbivores to the integrated effects of urban and global change

• Integrating the Effects of Global and Local Climate Change on Wildlife in North America

Get Our News

These items are in the RSS feed format (Really Simple Syndication) based on categories such as topics, locations, and more. You can install and RSS reader browser extension, software, or use a third-party service to receive immediate news updates depending on the feed that you have added. If you click the feed links below, they may look strange because they are simply XML code. An RSS reader can easily read this code and push out a notification to you when something new is posted to our site.