Skip to main content
U.S. flag

An official website of the United States government

Volcano Watch — Will drilling into magma start a volcanic eruption?

September 27, 2012

It seems logical that if underground magma can start an eruption by forcing its way to the surface, one might also start an eruption by opening a conduit from the surface to the magma. While plausible, that doesn’t seem to be what happens.

Magma has either been drilled into—or risen to enter—a drill hole four times, according to the scientific literature. Of the four incidents, three occurred in Iceland and one in Hawai`i with one of the Icelandic examples producing a brief spattering of lava. In all of the examples, the wells were not destroyed and continued to be used for their original purpose afterward.

The first known encounter was in September 1977, in a geothermal area south of Krafla volcano in Iceland. Hole B-4 was drilled to 1,138 m (3,734 ft) in 1968 and had been producing hot water and steam for the Namafjall geothermal plant before the incident. The sequence started with a small amount of lava erupted in the northern part of the Krafla caldera during a rifting event, and it was followed by a migration of earthquakes to the south, directly toward the plant and the well field that included B-4.

The earthquake swarm allowed the tracking of an injection of magma along dikes to the south. The earthquakes arrived in the Namafjall area about 10 pm and, about 40 minutes later, a large crack opened that cut the main road. At 11:45 pm, a loud explosion was heard when one of the pipes carrying steam from the well burst. It was followed 10-20 minutes later by a series of rapid explosions or shots (bursts?) of glowing cinders, carried upward by steam jetting from the ruptured pipe that lasted about one minute.

It was later found that the magma was injected into the drill hole between depths of 625 and 1,038 m (2,050 and 3,405 ft). The eruption produced only a few cubic meters (cubic yards) of lava spatter. Well B-4 was none the worse for the experience and, once the casing was repaired, continued in production until 2002.

The next three were less dramatic but equally interesting scientifically. Each was an instance of drilling into magma, and two of them were also in the Krafla volcanic zone. In 2008, well K-39 drilled into a glass at about 2.6-km (1.6-mi) depth. The glass had probably been molten magma but was rapidly cooled by the drilling fluids before the actual encounter. In 2011, magma flowed into an exploratory geothermal well (IDDP-01) drilled into the center of the volcano at 2.1-km (1.3-mi) depth.

The fourth example occurred in the only geothermal development in Hawai`i and involved drilling into the lower east rift zone of the active Kīlauea Volcano. In 2005, the Puna Geothermal Venture guided the KS-13 drilling operation into a molten magma body at 2.5-km (1.6-mi) depth beneath the Pu‘uhonua‘ula Cone and very close to the initial fissures that opened during the 1955 eruption of Kīlauea.

Upon analysis, the magma turned out to be dacite – a type of magma very different from the normally basaltic lavas that erupt from Kīlauea Volcano. While the main component of almost all magmas is silica (the stuff that window glass is made of), dacite has a lot more of it than basalt.

So where’d the dacite come from? We know that, during any eruption, not all of the magma that is transported through the volcano gets erupted. A significant portion is left within the rift zone. That magma slowly starts to cool and form crystals; because the crystals don’t use up the silica in the same proportion that exists in the magma, the remaining liquid magma becomes slowly more silica-rich.

Understanding this process helps us “see” where these magma storage areas are. When new eruptions occur, like that in 1955, for example, the first lavas usually contain small amounts of these stored lavas. That’s because the new magma rose through these storage areas and carried some of the remaining more silica-rich magma along with it. As the eruption progresses, the lavas usually become “fresher” or more like the stuff that is originally supplied to the volcano.

There are several of these local storage areas within Kīlauea volcano’s east rift zone and, based on these four examples, it doesn’t appear that drilling into one of them will start an eruption.

————————————————————————————————————————————————————————————————

Volcano Activity Update


A lava lake within the Halema‘uma‘u Overlook vent produced night-time glow that was visible from the Jaggar Museum overlook and by HVO's Webcam during the past week. The lava level rose and fell slightly due to a string of deflation-inflation cycles (DI events) at the summit and several brief gas-driven rise-fall cycles.

On Kīlauea's east rift zone, surface lava flows remain active high on the pali, within the upper part of the abandoned Royal Gardens subdivision, about 7.5 km (4.7 miles) southeast of Pu‘u ‘Ō‘ō. The lava pond in the northeastern pit in Pu`u `O`o crater was visible in the Webcam over the past week, with the level fluctuating slightly in response to the DI events.

There were no earthquakes reported felt on the Island of Hawai`i in the past week.

Get Our News

These items are in the RSS feed format (Really Simple Syndication) based on categories such as topics, locations, and more. You can install and RSS reader browser extension, software, or use a third-party service to receive immediate news updates depending on the feed that you have added. If you click the feed links below, they may look strange because they are simply XML code. An RSS reader can easily read this code and push out a notification to you when something new is posted to our site.