Skip to main content
U.S. flag

An official website of the United States government

Hydrologic Modeling

The USGS has been a leader in the development of hydrologic and geochemical simulation models since the 1960's. USGS models are widely used to predict responses of hydrologic systems to changing stresses, such as increases in precipitation or ground-water pumping rates, as well as to predict the fate and movement of solutes and contaminants in water.

Filter Total Items: 62

Delta-Mendota Canal: Using Groundwater Modeling to Analyze Land Subsidence

A numerical modeling approach was used to quantify groundwater conditions and land subsidence spatially along the Delta-Mendota Canal. In addition, selected management alternatives for controlling land subsidence were evaluated.
link

Delta-Mendota Canal: Using Groundwater Modeling to Analyze Land Subsidence

A numerical modeling approach was used to quantify groundwater conditions and land subsidence spatially along the Delta-Mendota Canal. In addition, selected management alternatives for controlling land subsidence were evaluated.
Learn More

Development of Precipitation-Runoff Modeling System (PRMS) for the Kings River Basin, California, with application for streamflow predictability and flood forecasting

This study will provide an analysis tool for forecasting seasonal and longer term streamflow variations, and for evaluating climate and land cover variations in the Kings River Basin. This study will directly or indirectly address several water-resource issues identified in the USGS Science Strategy document (USGS, 2007): drinking water availability, the suitability of aquatic habitat for biota...
link

Development of Precipitation-Runoff Modeling System (PRMS) for the Kings River Basin, California, with application for streamflow predictability and flood forecasting

This study will provide an analysis tool for forecasting seasonal and longer term streamflow variations, and for evaluating climate and land cover variations in the Kings River Basin. This study will directly or indirectly address several water-resource issues identified in the USGS Science Strategy document (USGS, 2007): drinking water availability, the suitability of aquatic habitat for biota...
Learn More

Water-level Contour Map of the Antelope Valley Groundwater Basin and Interactive Website, 2014

The USGS has a long history of collecting water-level data in the Antelope Valley groundwater basin. Previous water-level contour maps for Antelope Valley were published by the USGS in cooperation with the Antelope Valley – East Kern Water Agency as Open-File Reports 80-1222, 86-498 and 98-4022 using water-level data collected in 1979, 1984 and 1996, respectively. An updated water-level contour...
link

Water-level Contour Map of the Antelope Valley Groundwater Basin and Interactive Website, 2014

The USGS has a long history of collecting water-level data in the Antelope Valley groundwater basin. Previous water-level contour maps for Antelope Valley were published by the USGS in cooperation with the Antelope Valley – East Kern Water Agency as Open-File Reports 80-1222, 86-498 and 98-4022 using water-level data collected in 1979, 1984 and 1996, respectively. An updated water-level contour...
Learn More

Hydrogeologic Characterization of the Cox/San Andreas Oasis, California

The Bureau of Land Management (BLM) manages the Dos Palmas Oasis complex on the northeastern side of the Salton Sea for the maintainence of threatened and endangered species. This Oasis complex represents a rare area of riparian/wetland habitat in the midst of an extremely arid desert region. Anthropogenic development of water resources during the 1900s depleted natural groundwater supplies...
link

Hydrogeologic Characterization of the Cox/San Andreas Oasis, California

The Bureau of Land Management (BLM) manages the Dos Palmas Oasis complex on the northeastern side of the Salton Sea for the maintainence of threatened and endangered species. This Oasis complex represents a rare area of riparian/wetland habitat in the midst of an extremely arid desert region. Anthropogenic development of water resources during the 1900s depleted natural groundwater supplies...
Learn More

Development of Numeric Flow Criteria to Support Freshwater Biological Objectives and Hydrologic Modification Management in California's Wadeable Streams

The State Water Resources Control Board (SWRCB) of California has initiated a process to develop numerical biological objectives for wadeable freshwater streams and rivers for the entire state. Use of biological endpoints for regulatory or compliance purposes requires the ability to relate specific stressors to key biological metrics and to use this understanding to influence management actions...
link

Development of Numeric Flow Criteria to Support Freshwater Biological Objectives and Hydrologic Modification Management in California's Wadeable Streams

The State Water Resources Control Board (SWRCB) of California has initiated a process to develop numerical biological objectives for wadeable freshwater streams and rivers for the entire state. Use of biological endpoints for regulatory or compliance purposes requires the ability to relate specific stressors to key biological metrics and to use this understanding to influence management actions...
Learn More

Sediment supply, salt marsh monitoring, and the carbon budget of Humboldt Bay, CA

Suspended-sediment measurements are essential for coastal planning, resource management, and for assessing the sustainability of salt marshes in relation to expected sea-level rise. Suspended sediment can have positive or negative effects, depending on its characteristics and amount, and on the location and ecosystem services of interest. Sediment deposition in salt marshes helps sustain marsh...
link

Sediment supply, salt marsh monitoring, and the carbon budget of Humboldt Bay, CA

Suspended-sediment measurements are essential for coastal planning, resource management, and for assessing the sustainability of salt marshes in relation to expected sea-level rise. Suspended sediment can have positive or negative effects, depending on its characteristics and amount, and on the location and ecosystem services of interest. Sediment deposition in salt marshes helps sustain marsh...
Learn More

Simulating Land Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
link

Simulating Land Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
Learn More

Using Numerical Models to Simulate Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
link

Using Numerical Models to Simulate Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
Learn More

Aquifer Compaction due to Groundwater Pumping

Although land subsidence caused by groundwater pumping has caused many negative effects on human civil works for centuries, especially in the highly developed urban or industrialized areas of Europe, the relation between subsidence and groundwater pumpage was not understood or recognized for a long time. Recognition began in 1928 when pioneer researcher O.E. Meinzer of the U.S. Geological Survey...
link

Aquifer Compaction due to Groundwater Pumping

Although land subsidence caused by groundwater pumping has caused many negative effects on human civil works for centuries, especially in the highly developed urban or industrialized areas of Europe, the relation between subsidence and groundwater pumpage was not understood or recognized for a long time. Recognition began in 1928 when pioneer researcher O.E. Meinzer of the U.S. Geological Survey...
Learn More

Yucaipa Subbasin Integrated Hydrologic Model

The USGS is developing a hydrologic model of the Yucaipa Subbasin to aid in evaluating and managing the groundwater resources in the area. The study results will provide a greater understanding of the geohydrology of the subbasin, and aid in the development of a groundwater-monitoring plan, as well as in the evaluation of potential hydrologic effects of future groundwater development and...
link

Yucaipa Subbasin Integrated Hydrologic Model

The USGS is developing a hydrologic model of the Yucaipa Subbasin to aid in evaluating and managing the groundwater resources in the area. The study results will provide a greater understanding of the geohydrology of the subbasin, and aid in the development of a groundwater-monitoring plan, as well as in the evaluation of potential hydrologic effects of future groundwater development and...
Learn More

Increasing Soil Organic Carbon to Mitigate Greenhouse Gases and Increase Climate Resiliency for California

Rising air temperatures are projected to continue to drive up urban, agricultural, and rangeland water use, straining both surface and groundwater resources. Scientific studies have shown that managing farms, ranches, and public lands to increase soil carbon can increase soil waterholding capacity and increase hydrologic benefits such as increased baseflows and aquifer recharge, reduced flooding...
link

Increasing Soil Organic Carbon to Mitigate Greenhouse Gases and Increase Climate Resiliency for California

Rising air temperatures are projected to continue to drive up urban, agricultural, and rangeland water use, straining both surface and groundwater resources. Scientific studies have shown that managing farms, ranches, and public lands to increase soil carbon can increase soil waterholding capacity and increase hydrologic benefits such as increased baseflows and aquifer recharge, reduced flooding...
Learn More

Yucaipa Valley Hydrogeology

This study assesses the quality of water in the Yucaipa area, primarily in the Yucaipa plain. This hydrogeology study will aid local water purveyors in understanding and evaluating local resources and using those resources effectively in combination with water imported from northern California and from the adjacent San Bernardino area.
link

Yucaipa Valley Hydrogeology

This study assesses the quality of water in the Yucaipa area, primarily in the Yucaipa plain. This hydrogeology study will aid local water purveyors in understanding and evaluating local resources and using those resources effectively in combination with water imported from northern California and from the adjacent San Bernardino area.
Learn More