Skip to main content
U.S. flag

An official website of the United States government

Center of Excellence for Geospatial Information Science (CEGIS)

The CEGIS vision is to conduct, lead, and influence the research and innovative solutions required by the National Spatial Data Infrastructure (NSDI) and the emerging GeoSpatial and GeoSemantic Web. CEGIS is a virtual organization with Federal and academic affiliate scientists conducting research in support of The National Map and the Three-Dimensional Elevation Program (3DEP).

 

The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

Publications

Remote sensing-based 3D assessment of landslides: A review of the data, methods, and applications

Remote sensing (RS) techniques are essential for studying hazardous landslide events because they capture information and monitor sites at scale. They enable analyzing causes and impacts of ongoing events for disaster management. There has been a plethora of work in the literature mostly discussing (1) applications to detect, monitor, and predict landslides using various instruments and image anal
Authors
Hessah Albanwan, Rongjun Qin, Jung-Kuan (Ernie) Liu

GeoAI for spatial image processing

The development of digital image processing, as a subset of digital signal processing, depended upon the maturity of photography and image science, introduction of computers, discovery and advancement of digital recording devices, and the capture of digital images. In addition, government and industry applications in the Earth and medical sciences were paramount to the growth of the technology. Fr
Authors
Samantha Arundel, Kevin G McKeehan, Wenwen Li, Zhining Gu

At what scales does a river meander? Scale-specific sinuosity (S3) metric for quantifying stream meander size distribution

Stream bend geometry is linked to terrain features, hydrologic and ecologic conditions, and anthropogenic forces. Knowledge of the distributions of geometric properties of streams advances understanding of changing landscape conditions and associated processes that operate over a range of spatial scales. Statistical decomposition of sinuosity in natural linear features has proven a longstanding ch
Authors
Larry Stanislawski, Barry J. Kronenfeld, Barbara P. Buttenfield, Ethan J. Shavers