Skip to main content
U.S. flag

An official website of the United States government

Data

EROS is home to the world's largest collection of remotely sensed images of the Earth’s land surface and the primary source of Landsat satellite images and data products. NASA’s Land Processes Distributed Active Archive Center (LP DAAC) is also located at EROS. Use the links below to explore and access our data holdings.

Filter Total Items: 152

Landsat 7 Collection 2 cloud truth mask validation set

The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, SD developed a cloud validation dataset from 48 unique Landsat 7 Collection 2 images. These images were selected at random from the Landsat 7 SLC-On archive from various locations around the world. While these validation images were subjectively designed by a single analyst, they provide useful

Topobathymetric Model of the Coastal Georgia, 1851 to 2020

To support Hurricane Florence impact modeling of storm-induced flooding and sediment transport, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project has created an integrated 1-meter topobathymetric digital elevation model (TBDEM) for coastal Georgia. High-resolution coastal topobathymetric data are required to characterize flooding, storms, and sea-l

Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2022 (ver 6.0, July 2022)

These datasets provide early estimates of 2022 fractional cover for exotic annual grass (EAG) species and one native perennial grass species on a bi-weekly basis from May to early July. The EAG estimates are developed within one week of the latest satellite observation used for that version. Each bi-weekly release contains four fractional cover maps along with their corresponding confidence maps f

Monitoring Trends in Burn Severity (ver. 7.0, January 2024)

The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (including wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in th

Global reference evapotranspiration for food-security monitoring (ver. 2.1, April 2024)

The data are a long-term (1980-present), daily reanalysis of reference evapotranspiration, covering the globe at a spatial resolution of 0.625° Longitude x 0.5° Latitude. Reference evapotranspiration is a measure of evaporative demand, or the "thirst of the atmosphere", basically how much moisture from the surface could evaporate into overpassing air, assuming (i) that enough water is available to

Black Hills Region South Dakota 2017 Legion Lake Fire Burned and Unburned Plot Measurements

U.S Geological Survey (USGS) scientists conducted field data collection efforts during the time periods of September 5 - 14, 2018, November 8 - 13, 2018, June 18 - 27, 2019, July 30 - August 8, 2019, September 13 - 19, 2019, and June 23 - July 1, 2020. These efforts used a combination of technologies to map twenty burned and twelve unburned forest plots at eleven sites in the Black Hills of South

Projections of Rangeland Fractional Component Cover Across the Sagebrush Biome for Representative Concentration Pathways (RCP) 4.5 and 8.5 Scenarios for the 2020s, 2050s, and 2080s Time-Periods (ver. 1.1, April 2022)

Climate change over the past century has altered vegetation community composition and species distributions across rangelands in the western United States. The scale and magnitude of climatic influences are unknown. While a number of studies have projected the impacts of climate change using several modeling approaches, none has evaluated impacts to fractional component cover at a 30-m resolution

Chesapeake Bay Region Virginia River Bluff and Wetland Extent Mapping

The Chesapeake Bay Estuary is the largest estuary in the United States and provides habitats for diverse wildlife and aquatic species, protects communities against flooding, reduces pollution to waterways, and supports local economies through commercial and recreational activities. In the Spring of 2018, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Pro

Global gray-sky dT: the inverse of the surface psychrometric constant parameter in the SSEBop evapotranspiration model

The surface psychrometric constant (spc) is a key model parameter in actual evapotranspiration modeling using the Operational Simplified Surface Energy Balance (SSEBop) model for establishing model boundary limits for the dry/bare and wet/vegetated surface conditions. The inverse of the constant (1/spc) represents the temperature difference (dT) between the bare/dry surface and the air temperature

A circa 2010 global land cover reference dataset from commercial high resolution satellite data

The data are 475 thematic land cover raster?s at 2m resolution. Land cover classification was to the land cover classes: Tree (1), Water (2), Barren (3), Other Vegetation (4) and Ice & Snow (8). Cloud cover and Shadow were sometimes coded as Cloud (5) and Shadow (6), however for any land cover application would be considered NoData. Some raster?s may have Cloud and Shadow pixels coded or recoded t

Topobathymetric Model of the Coastal Carolinas, 1851 to 2020

To support Hurricane Florence impact modeling of storm-induced flooding and sediment transport, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project has created an integrated 1-meter topobathymetric digital elevation model (TBDEM) for coastal North Carolina, and South Carolina. High-resolution coastal topobathymetric data are required to characterize f

2020 Niobrara River Topobathymetric Lidar Validation – USGS Field Survey Data

U.S. Geological Survey (USGS) scientists conducted field data collection efforts between August 17th and 28th, 2020 over a large stretch of the Niobrara River in Nebraska using high accuracy surveying technologies. The work was initiated as an effort to validate commercially acquired topobathymetric light detection and ranging (lidar) data. The goal was to compare and validate the airborne lidar d