Skip to main content
U.S. flag

An official website of the United States government

Data

EROS is home to the world's largest collection of remotely sensed images of the Earth’s land surface and the primary source of Landsat satellite images and data products. NASA’s Land Processes Distributed Active Archive Center (LP DAAC) is also located at EROS. Use the links below to explore and access our data holdings.

Filter Total Items: 149

Using seasonal climate scenarios in the ForageAhead annual forage production model for early drought impact assessment

High interannual variability of forage production in semi-arid grasslands leads to uncertainties when livestock producers make decisions such as buying additional feed, relocating animals, or using flexible stocking. Within-season predictions of annual forage production (i.e., yearly production) can provide specific boundaries for producers to make these decisions with more information and possibl

Bias estimation for seven precipitation datasets for the eastern MENA region

Information on the spatio-temporal distribution of rainfall is critical for addressing water-related disasters, especially in the Middle East and North Africa's (MENA) arid to semi-arid regions.  However, the availability of reliable rainfall datasets for most river basins is limited.  In this study, we utilized observations from satellite-based rainfall data, in situ rain gauge observations, and

Satellite precipitation estimates for selected locations in the Republic of the Marshall Islands

The Republic of the Marshall Islands (RMI) is a sovereign Small Island State in the tropical central North Pacific Ocean. RMI is a nation of more than thirty atolls and islands, most of which are inhabited, dispersed across an exclusive economic zone (EEZ) over 2 million square kilometers. This data release contains files of daily precipitation estimates beginning in 2001 for 23 inhabited sites in

Forcing and Normalizing Operation (FANO) method for the Operational Simplified Surface Energy Balance (SSEBop) ET model

We developed an improved approach to the parameterization of the Operational Simplified Surface Energy Balance (SSEBop) model using the Forcing and Normalizing Operation (FANO). The FANO parameterization was implemented on two computing platforms using Landsat and gridded meteorological datasets: 1) Google Earth Engine (GEE) and 2) Earth Resources Observation and Science (EROS) Center Science Proc

High Resolution Daily Global Alfalfa-Reference Potential Evapotranspiration Climatology

Global alfalfa-reference potential evapotranspiration (ETr) is a key model parameter in actual evapotranspiration (ETa) modeling for worldwide applications. This dataset was constructed for use with the Operational Simplified Surface Energy Balance (SSEBop) model as a key driver of the final ETa magnitude. SSEBop is a parametric energy balance-based model that determines actual ET as the product o

Topobathymetric Model of the Northern Gulf of Mexico, 1885 to 2021

To support U.S. Army Corps of Engineers (USACE) storm surge modeling for the Louisiana Coastal Protection and Restoration Authority (CPRA), Lowermost Mississippi River Management Program (LMRMP), the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project has created an integrated 1-meter topobathymetric digital elevation model (TBDEM) for the Northern Gulf o

Burn Severity Portal, a clearing house of fire severity and extent information (ver. 6.0, January 2024)

The various post-fire data products available on the Burn Severity Portal are produced using satellite imagery. The timing of the satellite imagery used, relative to the fire event, typically depends on the vegetation type and structure where the fire occurred. Each mapping program produces a suite of data products based on user intended user needs. For more information about each of the programs,

S-NPP 375-m eVIIRS Remote Sensing Phenology Metrics - across the conterminous U.S.

Phenological dynamics of terrestrial ecosystems reflect the response of the Earth's vegetation canopy to changes in climate and hydrology and are thus important to monitor operationally. Researchers at the U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS) Center have developed methods for documenting the seasonal dynamics of vegetation in an operational fashion from sat

Exotic annual grass (EAG) phenology estimates in the western U.S. rangelands based on 30-m HLS NDVI (ver. 2.0, April 2024)

Phenological dynamics of terrestrial ecosystems reflect the response of the Earth's vegetation canopy to changes in climate and hydrology and are thus important to monitor operationally. The Exotic Annual Grass (EAG) phenology in the western U.S. rangeland based on 30m near seamless Harmonized Landsat and Sentinel-2 (HLS) Normalized Difference Vegetation Index (NDVI) weekly composites between 2016

Landsat 7 Collection 2 cloud truth mask validation set

The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, SD developed a cloud validation dataset from 48 unique Landsat 7 Collection 2 images. These images were selected at random from the Landsat 7 SLC-On archive from various locations around the world. While these validation images were subjectively designed by a single analyst, they provide useful

Topobathymetric Model of the Coastal Georgia, 1851 to 2020

To support Hurricane Florence impact modeling of storm-induced flooding and sediment transport, the U.S. Geological Survey (USGS) Coastal National Elevation Database (CoNED) Applications Project has created an integrated 1-meter topobathymetric digital elevation model (TBDEM) for coastal Georgia. High-resolution coastal topobathymetric data are required to characterize flooding, storms, and sea-l

Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2022 (ver 6.0, July 2022)

These datasets provide early estimates of 2022 fractional cover for exotic annual grass (EAG) species and one native perennial grass species on a bi-weekly basis from May to early July. The EAG estimates are developed within one week of the latest satellite observation used for that version. Each bi-weekly release contains four fractional cover maps along with their corresponding confidence maps f