Wetlands accumulate organic-rich sediment or peat stratigraphically, making them great archives of past environmental change. Wetlands also act as hydrologic buffers on the landscape and are important to global biogeochemical cycling. This project uses wetland archives from a range of environments to better understand how vegetation, hydrology, and hydroclimate has changed on decadal to multi-millennial timescales, and how wetlands have responded to past perturbations, such as fire, sea-level rise, and permafrost degradation. We use a multi-proxy approach that includes pollen, plant macrofossils, stable isotope analysis, and radiometric dating. Study sites range from Florida and the Atlantic Coastal Plain to Alaska.
Video Transcript
Project Lead: Miriam Jones
Project Team: Kristen Hoefke, Diana Carriker, Bailey Nash
Sea-level rise
Wetlands protect coastlines from sea-level rise, but wetland archives can also elucidate past change in rates and the responses of these coastal systems to those changes. By closely examining the layers laid down by wetland sediments and peat, we can use a combination of physical properties and radiometric dating to examine past rates of sea-level rise, while pollen, plant macrofossils, and stable isotopes, can provide insights into the depositional environment at the time of deposition. This project is currently examining Holocene rates of sea-level rise and mechanisms for inundation of formerly terrestrial environments in Florida Bay. We are also examining how tidal freshwater wetlands along the Atlantic Coastal Plain have shifted over the Holocene in response to changing rates of sea-level rise and the resilience of these riparian wetlands in the future.
Permafrost thaw
Permafrost, or permanently frozen ground, underlies vast swaths of the boreal and arctic zones. With thaw accelerating under current warming, wholesale ecological and hydrological changes are occurring, putting wildlife and infrastructure at risk. In permafrost peatlands, ice-rich permafrost thaw causes subsidence that can transform forested peatlands to wet herb and moss peatlands, resulting in large changes not only in the structure and function of these systems, but also in biogeochemical cycling. This project is examining the nature and rate of both permafrost aggradation and degradation on Holocene timescales to better understand trajectories of vegetation change and biogeochemical change upon thaw. Study sites include boreal peatlands in the discontinuous and sporadic permafrost zones of Alaska.
Land-use change
Human evidence of land-use change can be picked up to varying degrees in wetland records. In some cases, modifications are deliberate, such as ditching and draining of wetlands for harvesting of natural resources. In other cases, transformations to the larger landscape result in changes to neighboring wetlands and waterways, such as colonial land clearance that resulted in a large pulse of terrestrial sediment into riparian and coastal wetlands. This study is examining how a range of land-use changes have altered wetlands on decadal to centennial timescales, while also placing these changes into the greater context of natural variability by examining centennial to millennial-scale shifts. This project helps identify markers and impacts of land-use change and can also aid decision-makers and land managers plan for land restoration. Study sites include the Great Dismal Swamp, VA and tidal rivers on the Atlantic Coastal Plain.
Hydroclimate variability
Examining the range of hydroclimate variability from Holocene records can help contextualize recent observations. In some cases, hydroclimate variability is linked to long-term modes of climate variability, which can be linked to precipitation extremes and fisheries productivity. This study is examining Holocene hydroclimate variability using oxygen isotopes derived from peat cellulose across a the northern Gulf of Alaska and the Bering Sea to examine the timing and linkages to Aleutian Low variability and its connection to sea ice extent, ocean and atmosphere circulation, and teleconnections with northern hemisphere climate phenomena, such as El Nino Southern Oscillation, Arctic Oscillation, and the Pacific Decadal Oscillation.
Below are other science projects associated with this project.
Below are publications associated with this project.
The role of the upper tidal estuary in wetland blue carbon storage and flux
A North American Hydroclimate Synthesis (NAHS) of the Common Era
Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands
Soil data for a thermokarst bog and the surrounding permafrost plateau forest, located at Bonanza Creek Long Term Ecological Research Site, Interior Alaska
Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence
Presence of rapidly degrading permafrost plateaus in south-central Alaska
Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils
Thermokarst lake methanogenesis along a complete talik profile
Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review
A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
Late Holocene vegetation, climate, and land-use impacts on carbon dynamics in the Florida Everglades
A deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat
Below are partners associated with this project.
- Overview
Wetlands accumulate organic-rich sediment or peat stratigraphically, making them great archives of past environmental change. Wetlands also act as hydrologic buffers on the landscape and are important to global biogeochemical cycling. This project uses wetland archives from a range of environments to better understand how vegetation, hydrology, and hydroclimate has changed on decadal to multi-millennial timescales, and how wetlands have responded to past perturbations, such as fire, sea-level rise, and permafrost degradation. We use a multi-proxy approach that includes pollen, plant macrofossils, stable isotope analysis, and radiometric dating. Study sites range from Florida and the Atlantic Coastal Plain to Alaska.
Video Transcript
Sources/Usage: Public Domain.This video explains how scientists from the Florence Bascom Geoscience Center research paleo-environmental wetland conditions and explain how studying these environments is valuable to better understand past changes and responses to disturbance, such as fire, sea-level rise, and permafrost degradation. The USGS Florence Bascom Geoscience Center (FBGC) is at the leading edge of scientific research addressing critical societal issues and providing unbiased data and information to decision makers and the public. View the audio-described version. (Public domain.) Project Lead: Miriam Jones
Project Team: Kristen Hoefke, Diana Carriker, Bailey Nash
Sea-level rise
Wetlands protect coastlines from sea-level rise, but wetland archives can also elucidate past change in rates and the responses of these coastal systems to those changes. By closely examining the layers laid down by wetland sediments and peat, we can use a combination of physical properties and radiometric dating to examine past rates of sea-level rise, while pollen, plant macrofossils, and stable isotopes, can provide insights into the depositional environment at the time of deposition. This project is currently examining Holocene rates of sea-level rise and mechanisms for inundation of formerly terrestrial environments in Florida Bay. We are also examining how tidal freshwater wetlands along the Atlantic Coastal Plain have shifted over the Holocene in response to changing rates of sea-level rise and the resilience of these riparian wetlands in the future.
Scientists collect core samples from the Great Dismal Swamp, Virginia. (Credit: Debra Willard, USGS. Public domain.) Permafrost thaw
Permafrost, or permanently frozen ground, underlies vast swaths of the boreal and arctic zones. With thaw accelerating under current warming, wholesale ecological and hydrological changes are occurring, putting wildlife and infrastructure at risk. In permafrost peatlands, ice-rich permafrost thaw causes subsidence that can transform forested peatlands to wet herb and moss peatlands, resulting in large changes not only in the structure and function of these systems, but also in biogeochemical cycling. This project is examining the nature and rate of both permafrost aggradation and degradation on Holocene timescales to better understand trajectories of vegetation change and biogeochemical change upon thaw. Study sites include boreal peatlands in the discontinuous and sporadic permafrost zones of Alaska.
Land-use change
Human evidence of land-use change can be picked up to varying degrees in wetland records. In some cases, modifications are deliberate, such as ditching and draining of wetlands for harvesting of natural resources. In other cases, transformations to the larger landscape result in changes to neighboring wetlands and waterways, such as colonial land clearance that resulted in a large pulse of terrestrial sediment into riparian and coastal wetlands. This study is examining how a range of land-use changes have altered wetlands on decadal to centennial timescales, while also placing these changes into the greater context of natural variability by examining centennial to millennial-scale shifts. This project helps identify markers and impacts of land-use change and can also aid decision-makers and land managers plan for land restoration. Study sites include the Great Dismal Swamp, VA and tidal rivers on the Atlantic Coastal Plain.
Hydroclimate variability
Examining the range of hydroclimate variability from Holocene records can help contextualize recent observations. In some cases, hydroclimate variability is linked to long-term modes of climate variability, which can be linked to precipitation extremes and fisheries productivity. This study is examining Holocene hydroclimate variability using oxygen isotopes derived from peat cellulose across a the northern Gulf of Alaska and the Bering Sea to examine the timing and linkages to Aleutian Low variability and its connection to sea ice extent, ocean and atmosphere circulation, and teleconnections with northern hemisphere climate phenomena, such as El Nino Southern Oscillation, Arctic Oscillation, and the Pacific Decadal Oscillation.
- Science
Below are other science projects associated with this project.
- Multimedia
- Publications
Below are publications associated with this project.
Filter Total Items: 18The role of the upper tidal estuary in wetland blue carbon storage and flux
Carbon (C) standing stocks, C mass balance, and soil C burial in tidal freshwater forested wetlands (TFFW) and TFFW transitioning to low‐salinity marshes along the upper estuary are not typically included in “blue carbon” accounting, but may represent a significant C sink. Results from two salinity transects along the tidal Waccamaw and Savannah rivers of the US Atlantic Coast show total C standinA North American Hydroclimate Synthesis (NAHS) of the Common Era
This study presents a synthesis of century-scale hydroclimate variations in North America for the Common Era (last 2000 years) using new age models of previously published multiple proxy-based paleoclimate data. This North American Hydroclimate Synthesis (NAHS) examines regional hydroclimate patterns and related environmental indicators, including vegetation, lake water elevation, stream flow andByWater Resources Mission Area, Climate Research and Development Program, Energy Resources Program, Groundwater and Streamflow Information Program, Mineral Resources Program, National Laboratories Program, Science and Decisions Center, Florence Bascom Geoscience Center, Geology, Minerals, Energy, and Geophysics Science Center, Geosciences and Environmental Change Science Center, St. Petersburg Coastal and Marine Science CenterRapid carbon loss and slow recovery following permafrost thaw in boreal peatlands
Permafrost peatlands store one-third of the total carbon (C) in the atmosphere and are increasingly vulnerable to thaw as high-latitude temperatures warm. Large uncertainties remain about C dynamics following permafrost thaw in boreal peatlands. We used a chronosequence approach to measure C stocks in forested permafrost plateaus (forest) and thawed permafrost bogs, ranging in thaw age from youngSoil data for a thermokarst bog and the surrounding permafrost plateau forest, located at Bonanza Creek Long Term Ecological Research Site, Interior Alaska
Peatlands play an important role in boreal ecosystems, storing a large amount of soil organic carbon. In northern ecosystems, collapse-scar bogs (also known as thermokarst bogs) often form as the result of ground subsidence following permafrost thaw. To examine how ecosystem carbon balance changes with the loss of permafrost, we measured carbon and nitrogen storage within a thermokarst bog and theHolocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence
Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperPresence of rapidly degrading permafrost plateaus in south-central Alaska
Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0 °C. In this study, we document the presence of residual permafrost plateaus in the western Kenai PeninsulEffects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified sThermokarst lake methanogenesis along a complete talik profile
Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of thSources and sinks of carbon in boreal ecosystems of interior Alaska: a review
Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrA shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use fieldLate Holocene vegetation, climate, and land-use impacts on carbon dynamics in the Florida Everglades
Tropical and subtropical peatlands are considered a significant carbon sink. The Florida Everglades includes 6000-km2 of peat-accumulating wetland; however, detailed carbon dynamics from different environments within the Everglades have not been extensively studied or compared. Here we present carbon accumulation rates from 13 cores and 4 different environments, including sawgrass ridges and slougA deglacial and Holocene record of climate variability in south-central Alaska from stable oxygen isotopes and plant macrofossils in peat
We used stable oxygen isotopes derived from bulk peat (δ18OTOM), in conjunction with plant macrofossils and previously published carbon accumulation records, in a ∼14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and a - Partners
Below are partners associated with this project.