Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2148

DisasterNet: Causal Bayesian networks with normalizing flows for cascading hazards

Sudden-onset hazards like earthquakes often induce cascading secondary hazards (e.g., landslides, liquefaction, debris flows, etc.) and subsequent impacts (e.g., building and infrastructure damage) that cause catastrophic human and economic losses. Rapid and accurate estimates of these hazards and impacts are critical for timely and effective post-disaster responses. Emerging remote sensing techni
Authors
Xuechun Li, Paula Madeline Burgi, Wei Ma, Haeyoung Noh, David J. Wald, Susu Xu

The 2018 eruption of Kīlauea: Insights, puzzles, and opportunities for volcano science

The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano’s largest summit collapse since at least the nineteenth century. Eruptive activity was doc
Authors
Kyle R. Anderson, Tom Shea, Kendra J. Lynn, Emily Montgomery-Brown, Donald A. Swanson, Matthew R. Patrick, Brian Shiro, Christina A. Neal

Towards improved code-based performance objectives for liquefaction hazard analysis

Ground failure due to liquefaction in loose sand deposits poses substantial risks to the built environment, and has caused significant damage in past earthquakes to a wide range of infrastructure. Advances in liquefaction hazard analysis in practice have largely stagnated in recent years; the state of practice remains rooted in simplified procedures that ignore considerable uncertainties in liquef
Authors
Andrew James Makdisi, Steven L. Kramer

Comparison of co-recorded analog and digital systems for characterization of responses and uncertainties

One of the most prominent challenges related to legacy seismic data is determining how these data can be appropriately used in modern research applications. The wide variety of instrumentation used in the analog era, the format of recording on paper wrapped around a helicorder drum, and limited metadata information introduces ambiguities that are not typical of modern digital data. Therefore, tech
Authors
Thomas A. Lee, Adam T. Ringler, Robert E. Anthony, Miaki Ishii

Alerting the globe of consequential earthquakes

The primary ingredients on the hazard side of the equation include the rapid characterization of the earthquake source and quantifying the spatial distribution of the shaking, plus any secondary hazards an earthquake may have triggered. On the earthquake impact side, loss calculations require the aforementioned hazard assessments—and their uncertainties—as input, plus the quantification of the exp
Authors
David J. Wald

Distribution of large boulders on the deposit of the West Salt Creek rock avalanche, western Colorado

On May 25, 2014, a 54.5-million cubic meter rock avalanche in the West Salt Creek valley, Mesa County, Colorado, traveled 4.6 kilometers, leaving a deposit that covers about 2.2 square kilometers. To check the particle-size distribution of the deposit for information about the high mobility of the avalanche, we estimated boulder distribution density for the entire deposit by counting 1-meter (m) o
Authors
Adrian C. Lewis, Rex L. Baum, Jeffrey A. Coe

Debris-flow process controls on steepland morphology in the San Gabriel Mountains, California

Steep landscapes evolve largely by debris flows, in addition to fluvial and hillslope processes. Abundant field observations document that debris flows incise valley bottoms and transport substantial sediment volumes, yet their contributions to steepland morphology remain uncertain. This has, in turn, limited the development of debris-flow incision rate formulations that produce morphology consist
Authors
William Struble, Luke A. McGuire, Scott W. McCoy, Katherine R. Barnhart, Odin Marc

Postfire hydrologic response along the central California (USA) coast: Insights for the emergency assessment of postfire debris-flow hazards

The steep, tectonically active terrain along the Central California (USA) coast is well known to produce deadly and destructive debris flows. However, the extent to which fire affects debris-flow susceptibility in this region is an open question. We documented the occurrence of postfire debris floods and flows following the landfall of a storm that delivered intense rainfall across multiple burn a
Authors
Matthew A. Thomas, Jason W. Kean, Scott W. McCoy, Donald N. Lindsay, Jaime Kostelnik, David B. Cavagnaro, Francis K. Rengers, Amy E. East, Jonathan Schwartz, Douglas P. Smith, Brian D. Collins

Importance of subsurface water for hydrological response during storms in a post-wildfire bedrock landscape

Wildfire alters the hydrologic cycle, with important implications for water supply and hazards including flooding and debris flows. In this study we use a combination of electrical resistivity and stable water isotope analyses to investigate the hydrologic response during storms in three catchments: one unburned and two burned during the 2020 Bobcat Fire in the San Gabriel Mountains, California, U
Authors
Abra Atwood, Madeline Hille, Marin Clark, Francis K. Rengers, Dimitrios Ntarlagiannis, Kirk Townsend, A. Joshua West

The March 1940 superstorm: Geoelectromagnetic hazards and impacts on American communication and power systems

An analysis is made of geophysical records of the 24 March 1940, magnetic storm and related reports of interference on long-line communication and power systems across the contiguous United States and, to a lesser extent, Canada. Most long-line system interference occurred during local daytime, after the second of two storm sudden commencements and during the early part of the storm's main phase.
Authors
Jeffrey J. Love, E. Joshua Rigler, Michael D Hartinger, Greg M. Lucas, Anna Kelbert, Paul A. Bedrosian

The influence of large woody debris on post-wildfire debris flow sediment storage

Debris flows transport large quantities of water and granular material, such as sediment and wood, and this mixture can have devastating impacts on life and infrastructure. The proportion of large woody debris (LWD) incorporated into debris flows can be enhanced in forested areas recently burned by wildfire, because wood recruitment into channels accelerates in burned forests. In this study, we ex
Authors
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann Youberg, Daniel Cadol, Alexander Gorr, Olivia Joan Andrea Khoury Hoch, Rebecca Beers, Jason W. Kean

Introduction to the digitization of seismic data: A user’s guide

Modern seismic data are collected, distributed, and analyzed using digital formats, and this has become a standard for the field. Although most modern seismometers still make use of analog electronic circuits, their data are converted from an analog voltage output to time‐tagged counts by way of digitization. Although much of the digitization process is not complicated to conceptualize, there is a
Authors
Adam T. Ringler, Robert E. Anthony, Patrick Bastien, Adam Pascale, Bion J. Merchant