Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2148

Geologic controls of slow-moving landslides near the U.S. West Coast

Slow-moving landslides, often with nearly imperceptible creeping motion, are an important landscape shaper and a dangerous natural hazard across the globe, yet their spatial distribution and geologic controls are still poorly known owing to a paucity of detailed, large-area observations. Here, we use interferometry of L-band satellite radar images to reveal 617 spatially large (4 × 104–13 × 106 m2
Authors
Yuankun Xu, William Schulz, Zhong Lu, Jinwook Kim, Kelli Wadsworth Baxstrom

Why do my squiggles look funny? A gallery of compromised seismic signals

Seismic instruments are highly sensitive and capable of recording a large range of different Earth signals. The high sensitivity of these instruments also makes them prone to various failures. Although many failures are very obvious, such as a dead channel, there are other more subtle failures that easily go unnoticed by both network operators and data users. This work documents several different
Authors
Adam T. Ringler, David B. Mason, G. Laske, Tyler Storm, M. Templeton

Spectral damping scaling factors for horizontal components of ground motions from subduction earthquakes using NGA-Subduction data

This article develops global models of damping scaling factors (DSFs) for subduction zone earthquakes that are functions of the damping ratio, spectral period, earthquake magnitude, and distance. The Next Generation Attenuation for subduction earthquakes (NGA-Sub) project has developed the largest uniformly processed database of recorded ground motions to date from seven subduction regions: Alaska
Authors
Sanaz Rezaeian, L. Al Atik, N. M. Kuehn, N. A. Abrahamson, Y. Bozorgnia, S. Mazzoni, Kyle Withers, K. Campbell

Hazard analysis of landslides triggered by Typhoon Chata’an on July 2, 2002, in Chuuk State, Federated States of Micronesia

More than 250 landslides were triggered across the eastern volcanic islands of Chuuk State in the Federated States of Micronesia by torrential rainfall from tropical storm Chata’an on July 2, 2002. Landslides triggered during nearly 20 inches of rainfall in less than 24 hours caused 43 fatalities and the destruction or damage of 231 structures, including homes, schools, community centers, and medi
Authors
Edwin L. Harp, Mark E. Reid, John A. Michael

Inter-source interferometry of seismic body waves: Required conditions and examples

Seismic interferometry is widely applied to retrieve wavefields propagating between receivers. Another version of seismic interferometry, called inter-source interferometry, uses the principles of seismic reciprocity and expands interferometric applications to retrieve waves that propagate between two seismic sources. Previous studies of inter-source interferometry usually involve surface-wave and
Authors
P. Saengduean, Morgan P. Moschetti, R. Snieder

Down to Earth with nuclear electromagnetic pulse: Realistic surface impedance affects mapping of the E3 geoelectric hazard

An analysis is made of Earth-surface geoelectric fields and voltages on electricity transmission power-grids induced by a late-phase E3 nuclear electromagnetic pulse (EMP). A hypothetical scenario is considered of an explosion of several hundred kilotons set several hundred kilometers above the eastern-midcontinental United States. Ground-level E3 geoelectric fields are estimated by convolving a s
Authors
Jeffrey J. Love, Greg M. Lucas, Benjamin Scott Murphy, Paul A. Bedrosian, E. Joshua Rigler, Anna Kelbert

Seismic monitoring during crises at the NEIC in support of the ANSS

Over the past two decades, the U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) has overcome many operational challenges. These range from minor disruptions, such as power outages, to significant operational changes, including system reconfiguration to handle unique earthquake sequences and the need to handle distributed work during a pandemic. Our ability to overcome cr

Authors
Paul S. Earle, Harley M. Benz, William L. Yeck, Gavin P. Hayes, Michelle Guy, John Patton, David Kragness, David B. Mason, Brian Shiro, Emily Wolin, John Bellini, Jana Pursley, Robert Lorne Sanders

Selection of random vibration theory procedures for the NGA-East project and ground-motion modeling

Traditional ground-motion models (GMMs) are used to compute pseudo-spectral acceleration (PSA) from future earthquakes and are generally developed by regression of PSA using a physics-based functional form. PSA is a relatively simple metric that correlates well with the response of several engineering systems and is a metric commonly used in engineering evaluations; however, characteristics of the
Authors
Albert R. Kottke, Norman A. Abrahamson, David Boore, Yousef Bozorgina, Christine A. Goulet, Justin Hollenback, Tadahiro Kishida, Olga-Joan Ktenidou, Ellen M. Rathje, Walt Silva, Eric M. Thompson, Xiaoyue Wang

Preliminary assessment of the wave generating potential from landslides at Barry Arm, Prince William Sound, Alaska

We simulated the concurrent rapid motion of landslides on an unstable slope at Barry Arm, Alaska. Movement of landslides into the adjacent fjord displaced fjord water and generated a tsunami, which propagated out of Barry Arm. Rather than assuming an initial sea surface height, velocity, and location for the tsunami, we generated the tsunami directly using a model capable of simulating the dynamic
Authors
Katherine R. Barnhart, Ryan P. Jones, David L. George, Jeffrey A. Coe, Dennis M. Staley

Characterizing ground motion amplification by extensive flat sediments: The seismic response of the eastern U.S. Atlantic Coastal Plain strata

We examine the effects that Atlantic Coastal Plain (ACP) strata have on ground motions in the eastern and southeastern United States. The ACP strata consist of widespread, nearly flat‐lying sediments, the upper portions of which are unconsolidated or semiconsolidated. The ACP sediments are deposited primarily on crystalline basement rocks, creating large velocity and density contrasts with the und
Authors
Thomas L. Pratt, Lisa Sue Schleicher

HydroMet: A new code for automated objective optimization of hydrometeorological thresholds for landslide initiation

Landslide detection and warning systems are important tools for mitigation of potential hazards in landslide prone areas. Traditionally, warning systems for shallow landslides have been informed by rainfall intensity-duration thresholds. More recent advances have introduced the concept of hydrometeorological thresholds that are informed not only by rainfall, but also by subsurface hydrological mea
Authors
Jacob L. Conrad, Michael D. Morphew, Rex L. Baum, Benjamin B. Mirus