Skip to main content
U.S. flag

An official website of the United States government

Data

Continuous and discrete surface-water, groundwater, and water-quality data are collected to provide long-term hydrologic records critical to investigating hydrology, modeling climate-change, evaluating natural and anthropogenic changes in the hydrologic regime, and providing information on water availability to water managers.

Filter Total Items: 36

Spatial data set of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2017 and 2015 to 2017

The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This data release contains the data used t

Velocity and Bathymetric Data near Outlet Structures for the City of Omaha Water Resource Recovery Facilities on the Missouri River, 2020

These data sets were derived from surveys at the Missouri River and Papillion Creek Water Resource Recovery Facility outfalls on the Missouri River. Each site had three transects, one at the outfall, one 45.7 meters upstream of the outfall and one 45.7 meters downstream of the outfall. Velocity and depth data were collected using an acoustic Doppler current profiler at each transect. Elevations of

MODFLOW-NWT groundwater flow model used to evaluate groundwater availability with five forecast scenarios in the Northern High Plains Aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming

This groundwater flow model used a previously developed three-dimensional groundwater flow model (https://doi.org/10.3133/sir20165153) was used to assess future groundwater availability in the Northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming. In this groundwater flow model, a modified version of a previously published soil-water-balance (SWB) model (https://doi

Interpolated groundwater-level surface, spring 2017, Bazile Groundwater Management Area, northeastern Nebraska

This data set is a raster that represents the groundwater-level surface within the Bazile Groundwater Management Area (BGMA) in spring of 2017. This raster was created for use within the Geoscene3D program which combines airborne electromagnetic geophysical data along with supporting information for visualization and geological modeling. A water-level surface was created as input to a Geoscene3D p

Modeling Escherichia coli in the Missouri River near Omaha, Nebraska, 2012-16: Model Inputs and Outputs

This data release contains the inputs and outputs from the development of Escherichia coli (E. coli) concentration models for the four Missouri River sites near Omaha, Nebraska. Model development, models, and results are published in the associated U.S. Geological Survey (USGS) report Densmore and others, 2020. Load Estimator models (LOADEST) (Runkel and others, 2004) were developed from the first

Water Balance Monitoring Data for Two Biorentention Gardens in Omaha, Nebraska 2011-17

This data release includes stormwater inflow, outflow, and subsurface storage data for two bioretention gardens located in Omaha, Nebraska. Additionally, two additional datasets are included which contain meteorology and evapotranspiration data for each site. These sites were located at the Douglas County Health Center (DCHC), and the Eastern Nebraska Office on Aging (ENOA).

Flood-inundation geospatial datasets for the North Platte River at Scottsbluff and Gering, Nebraska

Digital flood-inundation maps for an 8.8-mile reach of the North Platte River, from 1.5 miles upstream of the Highway 92 bridge to 3 miles downstream of the Highway 71 bridge, were created by the U.S. Geological Survey (USGS) in cooperation with the Cities of Scottsbluff and Gering. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http:/

Water-level and aerial thermal infrared imagery data collected along the lower Platte and Elkhorn Rivers, Nebraska, 2016-2017

This dataset includes measured water-levels, water-level contours, aerial thermal infrared (TIR) imagery, and a stream centerline that were used to describe groundwater movement and interaction with surface water between the lower Platte and lower Elkhorn Rivers upstream of their confluence. The study design described herein focused on understanding seasonal characteristics of groundwater movemen

Flood-inundation geospatial datasets for the Salamonie River at Portland, Indiana

Digital flood-inundation maps for a 6.5-mile reach of the Salamonie River at Portland, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent

Monitoring Data for Willow Creek Lake, Nebraska, 2012-14

Monitoring data were collected from the Willow Creek drainage basin and Willow Creek Lake with a focus on 2012-14. Included are datasets of meteorology; lake measurements of water levels, sediment nutrients, and physical, chemical, and biological data; streamflow and stream chemistry; and calculated nutrient loads to the lake.

Niobrara River suspended-sediment and bed-sediment data collected during hydroelectric dam flush near Spencer, Nebr., October through November, 2014

In the fall of 2014 (October-November) the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers collected sediment samples (suspended and bed material) at several sites on the Niobrara River in Nebraska near the Spencer Dam prior to, during, and immediately after a sediment-flushing event. Suspended-sediment samples were analyzed for sediment concentration and percent finer

Water-level and digital data for the Elkhorn and Loup River Basins groundwater flow model, Phase Three

The U.S. Geological Survey, in cooperation with the Lewis and Clark, Lower Elkhorn, Lower Loup, Lower Platte North, Lower Niobrara, Middle Niobrara, Upper Elkhorn, and the Upper Loup Natural Resources Districts, designed a study to refine the spatial and temporal discretization of a previously modeled area. This updated study focused on a 30,000-square-mile area of the High Plains aquifer and cons