Skip to main content
U.S. flag

An official website of the United States government

Publications

This list of New Mexico Water Science Center publications spans from 1961 to the present. It includes both official USGS publications and journal articles authored by our scientists.

Filter Total Items: 349

Soils

Soils play a strong role in determining how New Mexico’s diverse landscapes will respond to climate change. Soil cover acts like a sponge, holding in water that falls as rain or snow. The presence of soil supports vegetation, and substantially reduces runoff and erosion. Soil enhances other processes such as infiltration of water and aquifer recharge. Soils can be damaged by a warming climate. Los
Authors
Leslie D. McFadden, Anne C. Tillery, Craig Allen

Suspended-sediment transport and water management, Jemez Canyon Dam, New Mexico, 1948–2018

Construction and operation of dams provide sources of clean drinking water, support large-scale irrigation, generate hydroelectricity, control floods, and improve river navigation. Yet these benefits are not without cost. Dams affect the natural flow regime, downstream sediment fluxes, and riverine and riparian ecosystems. The Jemez Canyon Dam in New Mexico was constructed in 1953 by the U.S. Army
Authors
Jeb E. Brown, Anne-Marie Matherne, Justin K. Reale, K.E. Miltenberger

Quality of groundwater used for public supply in the continental United States: A comprehensive assessment

The presence of contaminants in a source water can constrain its suitability for drinking. The quality of groundwater used for public supply was assessed in 25 principal aquifers (PAs) that account for 84% of groundwater pumped for public supply in the U.S. (89.6 million people on a proportional basis). Each PA was sampled across its lateral extent using an equal-area grid, typically with 60 wells

Authors
Kenneth Belitz, Miranda S. Fram, Bruce D. Lindsey, Paul Stackelberg, Laura M. Bexfield, Tyler D. Johnson, Bryant Jurgens, James A. Kingsbury, Peter B. McMahon, Neil M. Dubrovsky

Postfire debris flow hazards—Tips to keep you safe

Often referred to as “mudflows,” debris flows are a type of landslide made up of a rapidly moving mixture of dirt, rocks, trees, and water (and sometimes ash) that start on a hillside and travel downvalley. They can easily overflow channels and severely damage houses, vehicles, or other structures. Areas burned by wildfires are especially susceptible to these hazards, which can be triggered by sto
Authors
Steven Sobieszczyk, Jason W. Kean

Discovering hidden geothermal signatures using non-negative matrix factorization with customized k-means clustering

Discovery of hidden geothermal resources is challenging. It requires the mining of large datasets with diverse data attributes representing subsurface hydrogeological and geothermal conditions. The commonly used play fairway analysis approach typically incorporates subject-matter expertise to analyze regional data to estimate geothermal characteristics and favorability. We demonstrate an alternati
Authors
Velimir V. Vesselinov, Bulbul Ahmmed, Maruti K. Mudunuru, Jeff D. Pepin, Erick R. Burns, Drew L. Siler, Satish Karra, Richard S. Middleton

HydroBench: Jupyter supported reproducible hydrological model benchmarking and diagnostic tool

Evaluating whether hydrological models are right for the right reasons demands reproducible model benchmarking and diagnostics that evaluate not just statistical predictive model performance but also internal processes. Such model benchmarking and diagnostic efforts will benefit from standardized methods and ready-to-use toolkits. Using the Jupyter platform, this work presents HydroBench, a model-
Authors
Edom Moges, Benjamin Ruddell, Liang Zhang, Jessica M. Driscoll, Parker A. Norton, Fernando Perez, Laurel Larsen

Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2021

The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is hydrologically defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift between San Acacia to the south and Cochiti Lake to the north. A 20-percent population increase in the basin from 1990 to 2000
Authors
Meghan T. Bell, N.Y. Montero

How USGS gages are used in flood forecasting

The U.S. Geological Survey (USGS) operates an extensive nationwide network of stream, rain, and groundwater gages. These instruments are used to monitor how much water there is across the Nation at any given moment. Stream data are collected at streamgages every 15 minutes, transmitted to USGS servers, and updated online in real time. To improve awareness of current water conditions and possible f

Authors
Steven Sobieszczyk

Upper Rio Grande Basin water-resource status and trends: Focus area study review and synthesis

The Upper Rio Grande Basin (URGB) is a critical international water resource under pressure from a myriad of climatic, ecological, infrastructural, water-use, and legal constraints. The objective of this study is to provide a comprehensive assessment of the spatial distribution and temporal trends of selected water-budget components (snow processes, evapotranspiration (ET), streamflow processes, a
Authors
Kyle R. Douglas-Mankin, Christine Rumsey, Graham A. Sexstone, Tamara I. Ivahnenko, Natalie Houston, Shaleene Chavarria, Gabriel B. Senay, Linzy K. Foster, Jonathan V. Thomas, Allison K. Flickinger, Amy E. Galanter, C. David Moeser, Toby L. Welborn, Diana E. Pedraza, Patrick M. Lambert, Michael Scott Johnson

Deciphering natural and anthropogenic nitrate and recharge sources in arid region groundwater

Recently, the subsoils of ephemeral stream (arroyos) floodplains in the northern Chihuahuan Desert were discovered to contain large naturally occurring NO3− reservoirs (floodplain: ~38,000 kg NO3-N/ha; background: ~60 kg NO3-N/ha). These reservoirs may be mobilized through land use change or natural stream channel migration which makes differentiating between anthropogenic and natural groundwater
Authors
Benjamin S. Linhoff

Water-quality trends in surface waters of the Jemez River and Middle Rio Grande Basin from Cochiti to Albuquerque, New Mexico, 2004–19

Municipal water supply for Albuquerque, New Mexico, is provided, in part, through diversion of surface water from the Rio Grande by way of the San Juan-Chama Drinking Water Project diversion structure. Changes in surface-water quality along the Rio Grande and its tributaries upstream from the San Juan-Chama Drinking Water Project diversion structure are not well characterized. This study describes
Authors
Allison K. Flickinger, Zachary M. Shephard

Update and recalibration of the Rio Grande Transboundary Integrated Hydrologic Model, New Mexico and Texas, United States, and northern Chihuahua, Mexico

The Rio Grande Transboundary Integrated Hydrologic Model (RGTIHM) was developed through an interagency effort between the U.S. Geological Survey and the Bureau of Reclamation to provide a tool for analyzing the hydrologic system response to the historical evolution of water use and potential changes in water supplies and demands in the Hatch Valley (also known as Rincon Valley in the study area) a
Authors
Andre B. Ritchie, Amy E. Galanter, Allison K. Flickinger, Zachary M. Shephard, Ian M. Ferguson