Skip to main content
U.S. flag

An official website of the United States government

Groundwater Monitoring

Filter Total Items: 60

Long Island Hydrogeologic Units

Long Island’s aquifer system consists of a seaward-dipping wedge of mostly unconsolidated stratified sediments comprised of sand, gravel, silt and clay.
link

Long Island Hydrogeologic Units

Long Island’s aquifer system consists of a seaward-dipping wedge of mostly unconsolidated stratified sediments comprised of sand, gravel, silt and clay.
Learn More

Long Island State of the Aquifer System

One of the most important concepts to understand is that volumes of water pumped from a groundwater system must come from somewhere and must cause a change in the groundwater system. Another important concept is that water table aquifers are hydraulically connected to the streams that drain them. Therefore, pumping water from aquifers that are hydraulically connected with surface-water bodies can...
link

Long Island State of the Aquifer System

One of the most important concepts to understand is that volumes of water pumped from a groundwater system must come from somewhere and must cause a change in the groundwater system. Another important concept is that water table aquifers are hydraulically connected to the streams that drain them. Therefore, pumping water from aquifers that are hydraulically connected with surface-water bodies can...
Learn More

Long Island Water Availability

The foundation of any groundwater analysis, including those analyses whose objective is to propose and evaluate alternative management strategies, is the availability of high-quality data. Some, such as precipitation data, are generally available and relatively easy to obtain at the time of a hydrologic analysis. Other data and information, such as geologic and hydrogeologic maps, can require...
link

Long Island Water Availability

The foundation of any groundwater analysis, including those analyses whose objective is to propose and evaluate alternative management strategies, is the availability of high-quality data. Some, such as precipitation data, are generally available and relatively easy to obtain at the time of a hydrologic analysis. Other data and information, such as geologic and hydrogeologic maps, can require...
Learn More

Long Island Precipitation

The National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) offers several types of climate information generated from examination of the data in the archives. These types of information include record temperatures, record precipitation and snowfall, climate extreme statistics, and other derived climate products. A collection of statistical weather and climate...
link

Long Island Precipitation

The National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) offers several types of climate information generated from examination of the data in the archives. These types of information include record temperatures, record precipitation and snowfall, climate extreme statistics, and other derived climate products. A collection of statistical weather and climate...
Learn More

NWIS - the USGS Data Archive

As part of the U.S. Geological Survey's (USGS) program for disseminating water data within USGS, to USGS cooperators, and to the general public, the USGS maintains a distributed network of computers and fileservers for the acquisition, processing, review, and long-term storage of water data. This water data is collected at over 1.5 million sites around the country and at some border and...
link

NWIS - the USGS Data Archive

As part of the U.S. Geological Survey's (USGS) program for disseminating water data within USGS, to USGS cooperators, and to the general public, the USGS maintains a distributed network of computers and fileservers for the acquisition, processing, review, and long-term storage of water data. This water data is collected at over 1.5 million sites around the country and at some border and...
Learn More

Long Island Surface Water - Streamflow

Surface water current conditions are based on the most recent data from on-site automated recording equipment. Measurements are commonly recorded at a fixed interval of 15 to 60 minutes and transmitted by satallite uplink or telephone telemetry to the USGS every hour. Values may include "Approved" (quality-assured data that may be published) and/or more recent "Provisional" data (of unverified...
link

Long Island Surface Water - Streamflow

Surface water current conditions are based on the most recent data from on-site automated recording equipment. Measurements are commonly recorded at a fixed interval of 15 to 60 minutes and transmitted by satallite uplink or telephone telemetry to the USGS every hour. Values may include "Approved" (quality-assured data that may be published) and/or more recent "Provisional" data (of unverified...
Learn More

Long Island Groundwater Levels

Water-level measurements from observation wells are the principal source of information about the hydrologic stresses acting on aquifers and how these stresses affect groundwater recharge, storage, and discharge (Taylor and Alley, 2001). Water-level measurements are made by many Federal, State, and local agencies.
link

Long Island Groundwater Levels

Water-level measurements from observation wells are the principal source of information about the hydrologic stresses acting on aquifers and how these stresses affect groundwater recharge, storage, and discharge (Taylor and Alley, 2001). Water-level measurements are made by many Federal, State, and local agencies.
Learn More

Long Island Water Table and Surface Maps

The depth to the water table can be determined by installing wells that penetrate the top of the saturated zone just far enough to respond to water table fluctuations. Preparation of a water-table map requires that only wells that have their well screens installed near the water table be used. If the depth to water is measured at a number of such wells throughout an area of study, and if those...
link

Long Island Water Table and Surface Maps

The depth to the water table can be determined by installing wells that penetrate the top of the saturated zone just far enough to respond to water table fluctuations. Preparation of a water-table map requires that only wells that have their well screens installed near the water table be used. If the depth to water is measured at a number of such wells throughout an area of study, and if those...
Learn More

Long Island Water Use

The U.S. Geological Survey's National Water-Use Information Program (NWUIP) is responsible for compiling and disseminating the nation's water-use data. The USGS works in cooperation with local, State, and Federal environmental agencies to collect water-use information. USGS compiles these data to produce water-use information aggregated at the county, state, and national levels. Every five years...
link

Long Island Water Use

The U.S. Geological Survey's National Water-Use Information Program (NWUIP) is responsible for compiling and disseminating the nation's water-use data. The USGS works in cooperation with local, State, and Federal environmental agencies to collect water-use information. USGS compiles these data to produce water-use information aggregated at the county, state, and national levels. Every five years...
Learn More

Long Island Groundwater Budget

A groundwater system consists of a mass of water flowing through the pores or cracks below the Earth's surface. This mass of water is in constant motion. Water is constantly added to the system by recharge from precipitation, and water is constantly leaving the system as discharge to surface water and as evapotranspiration. Each groundwater system is unique in that the source and amount of water...
link

Long Island Groundwater Budget

A groundwater system consists of a mass of water flowing through the pores or cracks below the Earth's surface. This mass of water is in constant motion. Water is constantly added to the system by recharge from precipitation, and water is constantly leaving the system as discharge to surface water and as evapotranspiration. Each groundwater system is unique in that the source and amount of water...
Learn More

Long Island Inflow to the Groundwater System

Precipitation that infiltrates and percolates to the water table is Long Island's only natural source of freshwater because the groundwater system is bounded on the bottom by relatively impermeable bedrock and on the sides by saline ground water or saline bays and the ocean. About one-half the precipitation becomes recharge to the groundwater system; the rest flows as surface runoff to streams or...
link

Long Island Inflow to the Groundwater System

Precipitation that infiltrates and percolates to the water table is Long Island's only natural source of freshwater because the groundwater system is bounded on the bottom by relatively impermeable bedrock and on the sides by saline ground water or saline bays and the ocean. About one-half the precipitation becomes recharge to the groundwater system; the rest flows as surface runoff to streams or...
Learn More

Long Island Outflow from the Groundwater System

The flow of water leaving, or discharging, the groundwater system of Long Island occurs naturally through streams, as base flow, at the coastline as shoreline discharge and sub-sea discharge, and through pumping wells as withdrawals. Estimates of each component of outflow from the groundwater system is presented and summarized in this section using streamflow measurements, and a compilation of...
link

Long Island Outflow from the Groundwater System

The flow of water leaving, or discharging, the groundwater system of Long Island occurs naturally through streams, as base flow, at the coastline as shoreline discharge and sub-sea discharge, and through pumping wells as withdrawals. Estimates of each component of outflow from the groundwater system is presented and summarized in this section using streamflow measurements, and a compilation of...
Learn More