National Minerals Information Center

Publications

The Center conducts analyses of and develops information on minerals-related issues, including minerals conservation, sustainability, availability, materials flow, and the economic health of the U.S. minerals industry. 

Key Publications

Historical and Time Series Data

Historical and Time Series Data

A compilation of data on mineral production, imports, exports, stocks, reported and apparent consumption publications.

View All

Periodic Publications

Periodic Publications

A subset of our monthly, quarterly, and annual publications

View All

Special Publications

Special Publications

Fact Sheets - Short introductions to mineral commodities, materials flow, and supply chain topics

View All
Filter Total Items: 545
Publication Thumbnail
Year Published: 2017

Cobalt

Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in...

Schulz, Klaus J.; DeYoung,, John H. ; Seal, Robert R.; Bradley, Dwight C.; Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.
Slack, J.F., Kimball, B.E., and Shedd, K.B., 2017, Cobalt, chap. F of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. F1–F40, https://doi.org/10.3133/pp1802F.

Publication Thumbnail
Year Published: 2017

Critical mineral resources of the United States—An introduction

Many changes have taken place in the mineral resource sector since the publication by the U.S. Geological Survey of Professional Paper 820, “United States Mineral Resources,” which is a review of the long-term United States resource position for 65 mineral commodities or commodity groups. For example, since 1973, the United States has continued to...

Schulz, Klaus J.; DeYoung,, John H. ; Seal, Robert R.; Bradley, Dwight C.; Schulz, Klaus J.; DeYoung, John H.; Seal, Robert R.; Bradley, Dwight C.
Schulz, K.J., DeYoung, J.H., Jr., Bradley, D.C., and Seal, R.R., II, 2017, Critical mineral resources of the United States—An introduction, chap. A of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. A1–A14, https://doi.org/10.3133/pp1802A.

Publication Thumbnail
Year Published: 2017

Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply

SummaryMineral commodities are vital for economic growth, improving the quality of life, providing for national defense, and the overall functioning of modern society. Minerals are being used in larger quantities than ever before and in an increasingly diverse range of applications. With the increasing demand for a considerably more diverse suite...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., 2017, Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, 797 p., http://doi.org/10.3133/pp1802.

Publication Thumbnail
Year Published: 2017

Gallium

Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.
Foley, N.K., Jaskula, B.W., Kimball, B.E., and Schulte, R.F., 2017, Gallium, chap. H of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. H1–H35, https://doi.org/10.3133/pp1802H.

Publication Thumbnail
Year Published: 2017

Germanium and indium

Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.
Shanks, W.C.P., III, Kimball, B.E., Tolcin, A.C., and Guberman, D.E., 2017, Germanium and indium, chap. I of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. I1–I27, https://doi.org/10.3133/pp1802I.

Publication Thumbnail
Year Published: 2017

Graphite

Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.
Robinson, G.R., Jr., Hammarstrom, J.M., and Olson, D.W., 2017, Graphite, chap. J of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. J1–J24, https://doi.org/10.3133/pp1802J.

Publication Thumbnail
Year Published: 2017

Manganese

Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.
Cannon, W.F., Kimball, B.E., and Corathers, L.A., 2017, Manganese, chap. L of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. L1–L28, https://doi.org/10.3133/pp1802L.

Publication Thumbnail
Year Published: 2017

Rare-earth elements

The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph
Van Gosen, B.S., Verplanck, P.L., Seal, R.R., II, Long, K.R., and Gambogi, Joseph, 2017, Rare-earth elements, chap. O of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. O1–O31, https://doi.org/10.3133/pp1802O.

Publication Thumbnail
Year Published: 2017

Tellurium

Tellurium (Te) is a very rare element that averages only 3 parts per billion in Earth’s upper crust. It shows a close association with gold and may be present in orebodies of most gold deposit types at levels of tens to hundreds of parts per million. In large-tonnage mineral deposits, such as porphyry copper and seafloor volcanogenic massive...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Goldfarb, Richard J.; Berger, Byron R.; George, Micheal W.; Seal, Robert R.
Goldfarb, R.J., Berger, B.R., George, M.W., and Seal, R.R., II, 2017, Tellurium, chap. R of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. R1–R27, https://doi.org/10.3133/pp1802R.

Publication Thumbnail
Year Published: 2017

Titanium

Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.
Woodruff, L.G., Bedinger, G.M., and Piatak, N.M., 2017, Titanium, chap. T of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. T1–T23, https://doi.org/10.3133/pp1802T.

Publication Thumbnail
Year Published: 2017

Vanadium

Vanadium is used primarily in the production of steel alloys; as a catalyst for the chemical industry; in the making of ceramics, glasses, and pigments; and in vanadium redox-flow batteries (VRBs) for large-scale storage of electricity. World vanadium resources in 2012 were estimated to be 63 million metric tons, which include about 14 million...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Kelley, Karen D.; Scott, Clint; Polyak, Désirée E.; Kimball, Bryn E.
Kelley, K.D., Scott, C.T., Polyak, D.E., and Kimball, B.E., 2017, Vanadium, chap. U of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. U1–U36, https://doi.org/10.3133/pp1802U.

Publication Thumbnail
Year Published: 2017

Assessment of critical minerals: Updated application of an early-warning screening methodology

Increasing reliance on non-renewable mineral resources reinforces the need for identifying potential supply constraints before they occur. The US National Science and Technology Council recently released a report that outlines a methodology for screening potentially critical minerals based on three indicators: supply risk (R), production growth (G...

McCullough, Erin A.; Nassar, Nedal