Skip to main content
U.S. flag

An official website of the United States government

Publications

Below is a list of available NOROCK peer reviewed and published science. If you are in search of a specific publication and cannot find it below or through a search, please contact twojtowicz@usgs.gov.

Filter Total Items: 1197

Assay validation of saliva glucocorticoids in Columbia spotted frogs and effects of handling and marking

Non-invasive methods are important to the field of conservation physiology to reduce negative effects on organisms being studied. Glucocorticoid (GC) hormones are often used to assess health of individuals, but collection methods can be invasive. Many amphibians are imperiled worldwide, and saliva is a non- or semi-invasive matrix to measure GCs that has been partially validated for only four amph
Authors
Brian J. Tornabene, Blake R. Hossack, Creagh W. Breuner

Assessing snowpack stratigraphy accuracy based on different input data: Insights for operations avalanche forecasting

Avalanche forecasters and snow scientists use physically based snow stratigraphy models to fill spatial and temporal gaps in field-based snow profile observations. These models generate stratigraphy predictions using meteorological input from automated weather stations (AWS) or numerical weather prediction (NWP) models. The choice of input data is often determined by data availability or convenien
Authors
Ross T. Palomaki, Zachary Miller

Comparing snowpack meteorological inputs to support regional wet snow avalanche forecasting

Wet snow avalanches are predicted to increase in frequency with climate change and are often difficult to forecast. Improving our understanding of wet snow avalanche timing will help with current forecasting challenges. The onset of wet snow avalanching is closely tied to the temporal progression of liquid water flow through the seasonal snowpack. Measuring the flow of water through the snowpack i
Authors
Zachary Miller, Simon Horton, Christoph Mitterer, Erich Peitzsch

The relationship between whumpf observations and avalanche activity in Colorado, USA

Triggering whumpfs is a primary indicator of unstable snowpack conditions. Although backcountry travelers and avalanche forecasters rely on whumpfs as a warning sign of potential avalanches, there is little formal research to confirm this relationship. This study investigated the temporal correlation between whumpfs and avalanche activity in data from Colorado's Front Range and southern San Juan M
Authors
Jason Konigsberg, Ron Simenhois, Karl Birkeland, Erich Peitzsch, Doug Chabot, Ethan Greene

Mapping a glide avalanche with terrestrial lidar in Glacier National Park, USA

Thorough documentation of large avalanche events is important for forecasting efforts, infrastructure planning, and investigating the processes involved in avalanche formation and release. However, due in part to the isolated and dangerous nature of avalanche terrain, collecting in-situ, spatially continuous, and quantitative information surrounding avalanches remains difficult. Advances in remote
Authors
James W. Dillon, Zachary Miller, Erich Peitzsch, Kevin D. Hammonds

Temporal evolution of slab and weak layer properties during the transition from dry to wet snowpack conditions

Wet-snow slab avalanches are destructive and may become more prevalent in a warming climate. This type of avalanche remains challenging to forecast because the underlying processes leading to wet-snow slab avalanche release are poorly understood. In this study, we examine the temporal evolution of weak layer and slab liquid water content (LWC), critical cut length, and propagation saw test (PST) r
Authors
Josh Lipkowitz, Erich Peitzsch, Jean Dixon, Marcus Kalb, Douglas McCabe, Griffin Ditmar, Christoph Mitterer

Under-forecasting wet avalanche cycles: Case studies and lessons learned from two wet avalanche cycles in northwest Montana and central Colorado

Predicting the timing and location of natural wet avalanche events is challenging, especially the release of wet slabs. In this study, we describe the existing snowpack structure, weather, and observed avalanche activity for two separate wet avalanche cycles in different avalanche climate types: northwest Montana and central Colorado. In both cases, the regional avalanche forecast centers initiall
Authors
Zachary Guy, Erich Peitzsch

Spatial extent of forested avalanche terrain impacted by wildfire across the Sawtooth National Forest

Forest structure is a major driver of mountain snowpacks and avalanche occurrence. Healthy forests can reduce the incidence of dangerous slab avalanches, slow avalanches when in motion, shorten their runout distances, and act as a safety buffer for backcountry users, infrastructure, and transportation corridors. Since 1984, wildfire area in the seasonal snow zone of the western United States has i
Authors
Zachary Miller, John Sykes, Megan Guinn, Benjamin VandenBos, Scott Savage, Erich Peitzsch

Big avalanches in a changing climate: Using tree-ring derived avalanche chronologies to examine avalanche frequency across multiple climate types

Large-magnitude snow avalanches pose a hazard to humans and infrastructure worldwide. Analyzing the spatiotemporal behavior of avalanches and the contributory climate factors is important for understanding historical variability in climate-avalanche relationships as well as improving avalanche forecasting. This study uses established dendrochronological methods to develop long-term regional avalan
Authors
Erich Peitzsch, Gregory T. Pederson, Justin Martin, Eran Hood, Ethan Greene, Karl Birkeland, Kelly Elder, Gabriel Wolken, Nickolas E. Kichas, Daniel Kent Stahle, John Harley

Using tree rings to compare Colorado’s 2019 avalanche cycle to previous large avalanche cycles

Large magnitude avalanches (size ≥D3) impact settlements, transportation corridors, and public safety worldwide. In Colorado, United States, avalanches have killed more people than any other natural hazard since 1950. In March 2019, a historically large magnitude avalanche cycle occurred throughout the entire mountainous portion of Colorado resulting in more than 1000 reported avalanches during a
Authors
Erich Peitzsch, Ethan Greene, Jason Konigsberg, Gregory T. Pederson, Justin Martin, Nickolas Kichas, Daniel Kent Stahle, Adrien Favillier, Nicolas Eckert, Karl Birkeland, Kelly Elder

Reimagining large river management using the Resist–Accept–Direct (RAD) framework in the Upper Mississippi River

BackgroundLarge-river decision-makers are charged with maintaining diverse ecosystem services through unprecedented social-ecological transformations as climate change and other global stressors intensify. The interconnected, dendritic habitats of rivers, which often demarcate jurisdictional boundaries, generate complex management challenges. Here, we explore how the Resist–Accept–Direct (RAD) fra
Authors
Nicole K. Ward, Abigail Lynch, Erik A. Beever, Joshua Booker, Kristen L. Bouska, Holly Susan Embke, John F. Kocik, Joshua Kocik, Mary Grace T. Lemon, David J. Lawrence, Douglas Limpinsel, Madeline Magee, Bryan M. Maitland, Owen P. McKenna, Andrew R. Meier, John M. Morton, Jeffrey Muehlbauer, Robert Newman, Devon C. Oliver, Heidi M. Rantala, Greg G. Sass, Aaron D. Shultz, Laura Thompson, Jennifer L. Wilkening

Spatial variation in density of American black bears in northern Yellowstone National Park

The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to m
Authors
Nathaniel R. Bowersock, Andrea R. Litt, Michael A. Sawaya, Kerry A. Gunther, Frank T. van Manen