California Seafloor Mapping Program applications

Science Center Objects

California Seafloor Mapping Program data and map publications have and will be used for a large range of applications in coastal zone management and research.

Some examples:

  1. delineation and designation of california’s marine protected areas (Gleason et al., 2010; Saarman et al., 2013California Department of Fish and Wildlife2014, Young and Carr, 2015a)
  2. definition and modeling of benthic habitats and ecosystems (e.g., Hallenbeck and others, 2012; Krigsman and others, 2012; Davis and others, 2013; Greene and others, 2013; Storlazzi and others, 2013)
  3. updating NOAA nautical charts
  4. providing baselines for studies of coastal evolution due to climate change, large storms, and anthropogenic influences (e.g., Dallas and Barnard, 2011; Storlazzi and others, 2011Barnard and others, 2012; Limber et al., 2015);
  5. providing input to models of coastal flooding and sea-level rise (e.g., Barnard and others, 2014);
  6. documenting offshore sediment distribution, transport, and thickness as input to regional sediment management (e.g., Draut and others, 2009; Barnard and others, 2011; Warrick and others, 2013);
  7. documenting active offshore faults and submarine landslides for earthquake and tsunami hazard assessments (e.g., Johnson and Watt, 2012; Johnson and others, 2012; Watt and others, 2015);
  8. enhancing site evaluation for offshore infrastructure (e.g., pipelines, cables, alternative energy facilities); and
  9. facilitating outreach to heighten public education and awareness of coastal ecosystems, hazards, and resources.


Barnard, P.L., L.H. Erikson, and R.G. Kvitek, 2011, Small-scale sediment transport patterns and bedform morphodynamics—new insights from high-resolution multibeam bathymetry: Geo-Mar. Lett. 31, pp. 227–236, doi: 10.1007/s00367-011-0227-1.

Barnard, P.L., Erikson, L.H., Rubin, D.M., Dartnell, P., Kvitek, R.G., 2012, Analyzing bedforms mapped using multibeam sonar to determine regional bedload sediment transport patterns in the San Francisco Bay coastal system. In: Li, M.Z., Sherwood, C.R., Hill, P.R. (Eds.), Sediments, morphology and sedimentary processes on continental shelves—Advances in technologies, research and applications: Int. Ass. Sediment. Sp. Pub. 44, 273–294. 

Barnard, P.L., J.E. Hansen, and L.H. Erikson, 2012, Synthesis study of an erosion hot spot, Ocean Beach, California: Jour. Coast. Res. 28, pp. 903–922, doi: 10.2112/JCOASTRES-D-11-00212.1.

Barnard, P.L., M. van Ormondt, L.H. Erikson, J. Eshelman, C. Hapke, P. Ruggiero, P.N. Adams, and A.C. Foxgrover, 2014, Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts: Nat. Haz., 31 pp., doi: 10.1007/s11069-014-1236-y.

Beeson, J.W., Johnson, S.Y., Goldfinger, C., 2017, The transtensional offshore section of the northern San Andreas fault: fault zone geometry, Late-Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth: Geosphere 13:4, 34 pp., doi: 10.1130/GES01367.1

California Department of Fish and Wildlife, 2014, California Marine Protected Areas (MPAs) [Available at:].

Dallas, K.L., Barnard, P.L., 2011, Anthropogenic influences on shoreline and nearshore evolution in the San Francisco Bay coastal system: Estuarine, Coastal and Shelf Sci. 92, 195–204, doi: 10.1016/j.ecss.2010.12.031.

Davis, A.C.D., R.G., Kvitek, C.B.A. Mueller, M.A. Young, C.D. Storlazzi, and E.L. Phillips, 2013, Distribution and abundance of rippled scour depressions along the California coast: Cont. Shelf Res. 69, 88–100, doi: 10.1016/j.csr.2013.09.010.

Draut, A.E., P.E. Hart, T.L. Lorenson, H.F. Ryan, F.L. Wong, R.E. Sliter, and J.E. Conrad, 2009, Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA: Mar. Geophys. Res., 30, 193-206, doi: 10.1007/s11001-009-9076-y.

Gleason, M., McCreary, S., Miller-Henson, M., Ugoretz, J., Fox, E., Merrifield, M., McClintock, W., Serpa, P., Hoffman, K., 2010, Science-based and stakeholder-driven marine protected area network planning–A successful case study from north central California: Ocean Coast. Man. 53, 52–68.

Greene, H.G., C. Endris, T. Vallier, N. Golden, J. Cross, H. Ryan, B. Dieter, and E. Niven, E., 2013, Sub-tidal benthic habitats of central San Francisco Bay and offshore Golden Gate area – a review: Mar. Geol. 345, 31–46, doi: 10.1016/j.margeo.2013.05.001.

Hallenbeck, T.R., R.G. Kvitek, and J. Lindholm, 2012, Rippled scour depressions add ecologically significant heterogeneity to soft-bottom habitats on the continental shelf: Mar. Ecol. Prog. Ser. 468, 119–133, doi: 10.3354/meps09948.

Johnson, S.Y., Cochrane, G.R., Golden, N.E., Dartnell, P., Hartwell, S.R., Cochran, S.A., and Watt, J.T., 2017, The California Seafloor and Coastal Mapping Program – Providing science and geospatial data for California's State Waters: Ocean and Coastal Management 140, pp. 88–104, doi: 10.1016/j.ocecoaman.2017.02.004.

Johnson, S.Y., S.R. Hartwell, and P. Dartnell, 2014, Offset of latest Pleistocene shoreface reveals slip rate on the Hosgri strike-slip fault, offshore central California: Bull. Seismol. Soc. Am., 104, 1650–1662, doi: 10.1785/0120130257.

Johnson, S.Y., Hartwell, S.H., Sorlien, C.C., Dartnell, P., and Ritchie, A.R., 2017, Shelf evolution along a transpressive transform margin: Geosphere 13:6, 37 pp., doi: 10.1130/GES01387.1

Johnson, S.Y., and J.T. Watt, 2012, Influence of fault trend, bends, and convergence on shallow structure and geomorphology of the Hosgri strike-slip fault, offshore central California: Geosphere 8, 25 pp., doi: 10.1130/GES00830.1.

Johnson, S.Y., Watt, J.T., Hartwell, S.R., and Kluesner, J.W., 2018, Neotectonics Of The Big Sur Bend, San Gregorio-Hosgri Fault System, Central California: Tectonics, doi: 10.1029/2017TC004724.

Krigsman, L.M., M.M. Yoklavich, E.J. Dick, and G.R. Cochrane, 2012, Models and maps predicting the distribution of corals and other benthic macro-invertebrates in shelf habitats: Ecosphere, 16 pp., doi: 10.1890/ES11-00295.1.

Limber, P., Barnard, P.L., Hapke, C., 2015, Towards projecting the retreat of California’s coastal cliffs during the 21st Century: The Proceedings of the Coastal Sediments 2015, 14 pp., doi: 10.1142/9789814689977_0245.

Maier, K., Johnson, S.Y., and Hart, P., 2018, Controls on submarine canyon head evolution: Monterey Canyon, offshore central California: Mar. Geol. 404, 24-40, doi: 10.1016/j.margeo.2018.06.014

Saarman, E., Gleason, M., Ugoretz, J., Airame, S., Carr, M.H., Fox, E.W., Frimodig, A., Mason, T., Vasques, J., 2013, The role of science in supporting marine protected area network planning and design in California: Ocean Coast. Man. 74, 45–56.

Storlazzi, C.D., Fregoso, T.A., Figurski, J.D., Freiwald, J., Lonhart, S.I., and Finlayson, D.P., 2013, “Burial and exhumation of temperate bedrock reefs as elucidated by repetitive high-resolution seabed sonar surveys: Biological ramifications and guidance for future studies”: Continental Shelf Research 55, p. 40-51, doi: 10.1016/j.csr.2013.01.013

Storlazzi, C.D., Fregoso, T.A., Golden, N.E., Finlayson, D.P., 2011, Sediment dynamics and the burial and exhumation of bedrock reefs along an emergent coastline as elucidated by repetitive sonar surveys–Northern Monterey Bay, CA.: Mar. Geol. 289, 46–59, doi: 10.1016/j.margeo.2011.09.010.

Warrick, J. A., A. R. Simms, A. Ritchie, E. Steel, P. Dartnell, J. E. Conrad, and D. P. Finlayson, 2013, Hyperpycnal plume-derived fans in the Santa Barbara Channel, California: Geophys. Res. Lett. 40, 2081–2086, doi: 10.1002/grl.50488.

Watt, J.T., Johnson, S.Y., Hartwell, S.R., Roberts, M., 2015, Offshore geology and geomorphology maps from Piedras Blancas to Pismo Beach, California: U.S. Geol. Sur. Sci. Inv. Map 3327, 6 sheets, doi: 10.3133/sim3327.

Young, M.A., Carr, M.H., 2015a, Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring: PLoS one 10, e0116200.

Young, M. and Carr, M.H., 2015b, Application of species distribution models to explain and predict the distribution, abundance and assemblage structure of nearshore temperate reef fishes: Divers. Distrib. 21, 1–13.