Skip to main content
U.S. flag

An official website of the United States government

Science

link

Terrestrial Ecosystems and Restoration

link

Nonnative Species

link

Fish and Wildlife

link

Climate Change and Drought

link

Glen Canyon Dam Adaptive Management Program (GCDAMP)

link

Hydrology and Geomorphology

link

Land Use and Energy Development

link

Aquatic Ecosystems

link

Grand Canyon Monitoring and Research Center

FAQs

How dangerous is Mount Rainier?

Although Mount Rainier has not produced a significant eruption in the past 500 years, it is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Mount Rainier has 25 major glaciers containing more than five times as much snow and ice as all the other Cascade volcanoes combined. If...

link

How dangerous is Mount Rainier?

Although Mount Rainier has not produced a significant eruption in the past 500 years, it is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Mount Rainier has 25 major glaciers containing more than five times as much snow and ice as all the other Cascade volcanoes combined. If...

Learn More

What is the greatest hazard presented by Mount Rainier?

Debris flows (lahars) pose the greatest hazard to people near Mount Rainier. A debris flow is a mixture of mud and rock debris that looks and behaves like flowing concrete. Giant debris flows sometimes develop when large masses of weak, water-saturated rock slide from the volcano's flanks. Many of these debris flows cannot be predicted and may even occur independently of a volcanic eruption. Giant...

link

What is the greatest hazard presented by Mount Rainier?

Debris flows (lahars) pose the greatest hazard to people near Mount Rainier. A debris flow is a mixture of mud and rock debris that looks and behaves like flowing concrete. Giant debris flows sometimes develop when large masses of weak, water-saturated rock slide from the volcano's flanks. Many of these debris flows cannot be predicted and may even occur independently of a volcanic eruption. Giant...

Learn More

How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?

Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens. However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows (lahars) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from debris...

link

How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?

Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens. However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows (lahars) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from debris...

Learn More