St. Petersburg Coastal and Marine Science Center
Data and Tools
Seafloor Elevation Change From 2002 to 2016 in the Upper Florida Keys
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes in the Upper Florida Keys (UFK) from Triumph Reef to Pickles Reef within a 242.4 square-kilometer area.
Coastal Cliff Top and Toe Delineation Derived from Lidar for Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset delineates coastal cliff features (cliff tops, toes, and 3D elevation transects) to assess the hazard posed by eroding coastal cliffs in Puerto Rico, Culebra, and Vieques.
Historical Bathymetry in the Mississippi-Alabama Coastal Region: Bathymetric Soundings, Gridded Digital Elevation Model, and Hydrographic Sheets (Ver. 2.0)
Hydrographic sheets (H-sheets) produced by the National Ocean Service (NOS) during the 1800s provide historic sounding (water depth) measurements of coastal areas. The data can be vectorized into a geographic information system (GIS), adjusted to a modern vertical datum, and converted into a digital elevation model to provide an interpretation of the historic seafloor elevation. These data...
Post-Hurricane Florence Aerial Imagery: Cape Fear to Duck, North Carolina, October 6-8, 2018
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motio
Archive of Digitized Analog Boomer Seismic Reflection Data Collected from the Northern Gulf of Mexico: Intersea 1980
The U.S. Geological Survey (USGS) Coastal and Marine Hazards and Resources Program (CMHRP) has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper r
Seafloor Elevation Change From 2016 to 2017 at Looe Key, Florida Keys-Impacts From Hurricane Irma (version 2.0)
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at Looe Key near Big Pine Key, Florida (FL), within a 19.7 square-kilometer area following Hurricane Irma's landfall in September 2017. USGS staff used light detection and ranging (lidar)-derived data acquired by the National Oceanic and Atmospher
Coastal Single-beam Bathymetry Data Collected in September and October 2019 from Rockaway Peninsula, New York
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS - SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of Rockaway Peninsula, New York September 27 - October 6, 2019. During this study, bathymetry data were collected aboard two personal watercraft (PWC) outfitted with single-beam echosounders, as well
Coastal Multibeam Bathymetry and Backscatter Data Collected in October 2019 from Rockaway Peninsula, New York: Leg 2
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from October 24-29, 2019. This dataset, Rockaway_2019_
Coastal Multibeam Bathymetry and Backscatter Data Collected in October 2019 from Rockaway Peninsula, New York: Leg 1
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from October 4-6, 2019. This dataset, Rockaway_2019_MB
2018 East Coast (CT, MA, NC) USACE NCMP Topobathy Lidar Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and posit...
2005 East Coast (DE, MD,NJ, NY, NC, and VA) USACE NCMP Topobathy Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and posit...
2018 South Texas USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and posit...