Skip to main content
U.S. flag

An official website of the United States government

Climate Change Impacts

Explore science related to climate change at the USGS St. Petersburg Coastal and Marine Science Center.

Filter Total Items: 17

Coastal Resource Evaluation for Management Application (CREMA)

Coastal environments are dynamic systems that provide high ecological, economical, recreational, and cultural value. Managing coastal systems requires a comprehensive understanding of the complex interactions between geological and ecological processes, as well as the ability to predict both the near-term and long-term impacts of storms and sea-level rise. The Coastal Resource Evaluation for...
link

Coastal Resource Evaluation for Management Application (CREMA)

Coastal environments are dynamic systems that provide high ecological, economical, recreational, and cultural value. Managing coastal systems requires a comprehensive understanding of the complex interactions between geological and ecological processes, as well as the ability to predict both the near-term and long-term impacts of storms and sea-level rise. The Coastal Resource Evaluation for...
Learn More

Estuarine and MaRsh Geology Research Project

The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of Mexico (Grand Bay and Point aux Chenes, Mississippi and St...
link

Estuarine and MaRsh Geology Research Project

The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of Mexico (Grand Bay and Point aux Chenes, Mississippi and St...
Learn More

Coastal System Change at Fire Island, New York

Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
link

Coastal System Change at Fire Island, New York

Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
Learn More

Barrier Island Evolution - Applied Research

Assessments include depiction of trends (the past points to the future), updated observations (topography/bathymetry), and predicted sensitivity of barrier island evolution to possible climatologies and restoration plans.
link

Barrier Island Evolution - Applied Research

Assessments include depiction of trends (the past points to the future), updated observations (topography/bathymetry), and predicted sensitivity of barrier island evolution to possible climatologies and restoration plans.
Learn More

Sea Level Rise and Climate: Impacts on the Greater Everglades Ecosystem and Restoration

The Greater Everglades Ecosystem covers much of south Florida, and the highest areas are only a few meters above sea level. Predictions of sea level rise and changes in storm intensity for the 21st century are particularly concerning to the urban population of Miami and the east coast, but also represent a challenge to Everglades National Park and Biscayne National Park resource managers. The...
link

Sea Level Rise and Climate: Impacts on the Greater Everglades Ecosystem and Restoration

The Greater Everglades Ecosystem covers much of south Florida, and the highest areas are only a few meters above sea level. Predictions of sea level rise and changes in storm intensity for the 21st century are particularly concerning to the urban population of Miami and the east coast, but also represent a challenge to Everglades National Park and Biscayne National Park resource managers. The...
Learn More

Coral Reef Ecosystem Studies (CREST)

The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...
link

Coral Reef Ecosystem Studies (CREST)

The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...
Learn More

Hurricane Sandy Response - Storm Impacts and Vulnerability of Coastal Beaches

Scientists evaluated and improved the accuracy of pre-landfall forecasts of storm-induced coastal erosion hazards for Northeast beaches using data from post-Sandy lidar sruveys, beach morphology, and storm hydrodamics.
link

Hurricane Sandy Response - Storm Impacts and Vulnerability of Coastal Beaches

Scientists evaluated and improved the accuracy of pre-landfall forecasts of storm-induced coastal erosion hazards for Northeast beaches using data from post-Sandy lidar sruveys, beach morphology, and storm hydrodamics.
Learn More

Coral Reef Seafloor Erosion and Coastal Hazards

Synchronized field work focused on geochemistry, geology, and metabolic processes overlaid on a habitat map of an entire reef to produce a synoptic overview of reef processes that contribute to carbonate precipitation and dissolution.
link

Coral Reef Seafloor Erosion and Coastal Hazards

Synchronized field work focused on geochemistry, geology, and metabolic processes overlaid on a habitat map of an entire reef to produce a synoptic overview of reef processes that contribute to carbonate precipitation and dissolution.
Learn More

Paleoceanographic Proxy Calibration

A sediment trap time series in the northern Gulf of Mexico is used to better assess the control of environmental variables (e.g., temperature and salinity) on the flux of both microfossils and molecular fossils to the sediments. The information gained from sediment trap studies is used to develop better proxy-based estimates of past oceanographic conditions from analyses of microfossils and...
link

Paleoceanographic Proxy Calibration

A sediment trap time series in the northern Gulf of Mexico is used to better assess the control of environmental variables (e.g., temperature and salinity) on the flux of both microfossils and molecular fossils to the sediments. The information gained from sediment trap studies is used to develop better proxy-based estimates of past oceanographic conditions from analyses of microfossils and...
Learn More

Climate and Environmental Change in the Gulf of Mexico and Caribbean

This project documents paleoceanographic, climatic, and environmental changes in the Gulf of Mexico and adjacent land areas over the last 10,000 years. The paleoenvironmental data is used to determine rates of change in the past, and to better understand both the natural and anthropogenic factors that contribute to climate variability on inter-annual to millennial timescales.
link

Climate and Environmental Change in the Gulf of Mexico and Caribbean

This project documents paleoceanographic, climatic, and environmental changes in the Gulf of Mexico and adjacent land areas over the last 10,000 years. The paleoenvironmental data is used to determine rates of change in the past, and to better understand both the natural and anthropogenic factors that contribute to climate variability on inter-annual to millennial timescales.
Learn More
link

Hurricane Irma - Forecast and Documentation of Coastal Change

Hurricane Irma coastal change forecast and pre- and post-storm photos documenting coastal change.
Learn More
link

Hurricane Nate - Forecast and Documentation of Coastal Change

Hurricane Nate coastal change forecast and pre- and post-storm photos documenting coastal change.
Learn More