Skip to main content
U.S. flag

An official website of the United States government

Sediment and Erosion

Filter Total Items: 28

Edge-of-field monitoring

Edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which can threaten the health of streams, rivers, and lakes. Edge-of-field monitoring assesses the quantity and quality of agricultural runoff and evaluates the effectiveness of conservation practices that aim to reduce nutrient loss.
link

Edge-of-field monitoring

Edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which can threaten the health of streams, rivers, and lakes. Edge-of-field monitoring assesses the quantity and quality of agricultural runoff and evaluates the effectiveness of conservation practices that aim to reduce nutrient loss.
Learn More

Mercury studies

The USGS Mercury Research Lab is a national leader in advancing mercury research and science, specializing in low-level mercury speciation and isotope analysis and mercury-source fingerprinting. The MRL leads national cutting-edge collaborative studies, including state-of-the-art sample analysis, methods development for field and lab procedures, and data interpretation and dissemination.
link

Mercury studies

The USGS Mercury Research Lab is a national leader in advancing mercury research and science, specializing in low-level mercury speciation and isotope analysis and mercury-source fingerprinting. The MRL leads national cutting-edge collaborative studies, including state-of-the-art sample analysis, methods development for field and lab procedures, and data interpretation and dissemination.
Learn More

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
link

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
Learn More

Fluvial geomorphology studies

Fluvial geomorphology studies provide an understanding of the physical processes responsible for shaping the character of streams and their riparian zones across both glaciatied and unglaciated regions of Wisconsin and the midwestern U.S.
link

Fluvial geomorphology studies

Fluvial geomorphology studies provide an understanding of the physical processes responsible for shaping the character of streams and their riparian zones across both glaciatied and unglaciated regions of Wisconsin and the midwestern U.S.
Learn More

Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)

Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss.
link

Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)

Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss.
Learn More

Particle-size distribution from urban land use and source areas

Many control options for sediments and associated contaminants in storm-water runoff from urban areas rely on settling of solids. This study characterizes particle-size distributions in urban storm-water runoff from specific source areas and land-use categories, with the hopes of assisting watershed managers and engineers design better control devices for reducing sediment in urban runoff.
link

Particle-size distribution from urban land use and source areas

Many control options for sediments and associated contaminants in storm-water runoff from urban areas rely on settling of solids. This study characterizes particle-size distributions in urban storm-water runoff from specific source areas and land-use categories, with the hopes of assisting watershed managers and engineers design better control devices for reducing sediment in urban runoff.
Learn More

Evaluating the potential benefits of permeable pavement on the quantity and quality of stormwater runoff

Permeable pavement is a porous urban surface which catches precipitation and surface runoff, storing it in the reservoir while slowly allowing it to infiltrate into the soil below. This study will evaluate how well different types of permeable pavement reduces the amount of pollutants and runoff volume.
link

Evaluating the potential benefits of permeable pavement on the quantity and quality of stormwater runoff

Permeable pavement is a porous urban surface which catches precipitation and surface runoff, storing it in the reservoir while slowly allowing it to infiltrate into the soil below. This study will evaluate how well different types of permeable pavement reduces the amount of pollutants and runoff volume.
Learn More

Dane County water-quality monitoring program

Many Dane County, Wis., streams and lakes have been degraded due to excessive nutrients and sediment contributed primarily by agriculture and urbanization. The goal is to build a long-term base of streamflow, lake stage, and water-quality data essential for water-resource planning and assessment purposes for streams and lakes in Dane County, with a focus on the Yahara River Basin.
link

Dane County water-quality monitoring program

Many Dane County, Wis., streams and lakes have been degraded due to excessive nutrients and sediment contributed primarily by agriculture and urbanization. The goal is to build a long-term base of streamflow, lake stage, and water-quality data essential for water-resource planning and assessment purposes for streams and lakes in Dane County, with a focus on the Yahara River Basin.
Learn More

Edge-of-field monitoring: Discovery Farms

The USGS is cooperating with Discovery Farms to understand agriculture’s impact on the environment and help producers find ways to minimize their impact while remaining economically viable. Edge-of-field or subsurface tile monitoring stations measure runoff-event volume, including snowmelt, and collect samples which are analyzed for suspended sediment, phosphorus, nitrogen, and chloride.
link

Edge-of-field monitoring: Discovery Farms

The USGS is cooperating with Discovery Farms to understand agriculture’s impact on the environment and help producers find ways to minimize their impact while remaining economically viable. Edge-of-field or subsurface tile monitoring stations measure runoff-event volume, including snowmelt, and collect samples which are analyzed for suspended sediment, phosphorus, nitrogen, and chloride.
Learn More

Measuring Suspended-Sediment Concentrations, Grain Sizes and Bedload using Acoustic Doppler Velocity Meters and Echologgers in the Lower Chippewa River, Wisconsin

Sediment from the Chippewa River deposits in the Mississippi River navigation channel, sometimes disrupting commercial barge traffic and resulting in expensive and ecologically disruptive dredging operations. The USGS is using new applications of hydroacoustic technologies to better understand sediment transport in the Chippewa River and associated effects on commercial navigation.
link

Measuring Suspended-Sediment Concentrations, Grain Sizes and Bedload using Acoustic Doppler Velocity Meters and Echologgers in the Lower Chippewa River, Wisconsin

Sediment from the Chippewa River deposits in the Mississippi River navigation channel, sometimes disrupting commercial barge traffic and resulting in expensive and ecologically disruptive dredging operations. The USGS is using new applications of hydroacoustic technologies to better understand sediment transport in the Chippewa River and associated effects on commercial navigation.
Learn More

Water Chemistry Monitoring Project - Rivers and Streams

In support of the Michigan Department of Environmental Quality (MDEQ) Water Chemistry Monitoring Project, the USGS Michigan Water Science Center has been collecting long-term water quality data for Michigan's rivers and streams.
link

Water Chemistry Monitoring Project - Rivers and Streams

In support of the Michigan Department of Environmental Quality (MDEQ) Water Chemistry Monitoring Project, the USGS Michigan Water Science Center has been collecting long-term water quality data for Michigan's rivers and streams.
Learn More

Upper Pecatonica River Wisconsin Buffer Initiative pilot project

The Upper Pecatonica River pilot project is testing targeted water-quality improvement strategies in small agricultural watersheds. The USGS is contributing by monitoring phosphorus and sediment at the watershed outlets, quantifying in-stream sources and sinks of phosphorus and sediment, and developing innovative approaches for quantifying sediment-related stream impairments and TMDLs.
link

Upper Pecatonica River Wisconsin Buffer Initiative pilot project

The Upper Pecatonica River pilot project is testing targeted water-quality improvement strategies in small agricultural watersheds. The USGS is contributing by monitoring phosphorus and sediment at the watershed outlets, quantifying in-stream sources and sinks of phosphorus and sediment, and developing innovative approaches for quantifying sediment-related stream impairments and TMDLs.
Learn More