Skip to main content
U.S. flag

An official website of the United States government

Water Quality

Water quality is a measure of the suitability of water for a particular use based on selected physical, chemical, and biological characteristics. Water-quality monitoring is used to help water-resource managers understand and avert potential negative effects of man-made and natural stresses on water resources. The Upper Midwest Water Science Center investigates water-quality issues using new technologies and techniques to study the physical, chemical, biological, geological interactions in rivers, streams, lakes, and groundwater in Michigan, Minnesota, Wisconsin and across the Nation. Some of the issues we address include the occurrence, distribution, trends, and modeling of pollutants; the relationship between ecological responses and water quality; and the relationships between natural factors, land use, and water quality, in both rural and urban settings.

Filter Total Items: 72

Chemicals of Concern in the Great Lakes Basin

The Great Lakes are an important freshwater source of drinking water, fisheries, and habitat. Chemicals of concern are introduced to the environment by human activities, but resulting ecological consequences are little understood. With federal and University partners, we are characterizing the presence of contaminants and potential effects to fish in Great Lakes tributaries.
link

Chemicals of Concern in the Great Lakes Basin

The Great Lakes are an important freshwater source of drinking water, fisheries, and habitat. Chemicals of concern are introduced to the environment by human activities, but resulting ecological consequences are little understood. With federal and University partners, we are characterizing the presence of contaminants and potential effects to fish in Great Lakes tributaries.
Learn More

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
link

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
Learn More

Bacterial Pathogens

The U.S. Geological Survey (USGS) Michigan Bacteriological Research Laboratory (MI-BaRL) studies the source, occurrence, and distribution of the bacterial pathogens Shiga-toxin producing E. coli (STEC), Salmonella, Shigella, Campylobacter, Enterococcus, and Staphylococcus and the relation of occurrence of pathogens with fecal indicator bacteria, land-use, season, hydrology, geology, weather...
link

Bacterial Pathogens

The U.S. Geological Survey (USGS) Michigan Bacteriological Research Laboratory (MI-BaRL) studies the source, occurrence, and distribution of the bacterial pathogens Shiga-toxin producing E. coli (STEC), Salmonella, Shigella, Campylobacter, Enterococcus, and Staphylococcus and the relation of occurrence of pathogens with fecal indicator bacteria, land-use, season, hydrology, geology, weather...
Learn More

Enhance Great Lakes Beach Recreational Water Quality Decision Making

Important questions about beach closures and management remain unanswered in the Great Lakes where over 500 beaches are routinely used along the nearly 11,000 miles of coastline. The economies of coastal areas are dependent on public confidence in the quality of water at the shoreline, and beach managers need reliable science-based information to make beach closure and beach management decisions...
link

Enhance Great Lakes Beach Recreational Water Quality Decision Making

Important questions about beach closures and management remain unanswered in the Great Lakes where over 500 beaches are routinely used along the nearly 11,000 miles of coastline. The economies of coastal areas are dependent on public confidence in the quality of water at the shoreline, and beach managers need reliable science-based information to make beach closure and beach management decisions...
Learn More

Using optical sensors to detect sewage contamination in the Great Lakes

In the Great Lakes, large volumes of sewage never make it to wastewater treatment plants due to illicit discharges and leaking sewer infrastructure, but contamination can be difficult to detect. This study will define the utility and practicality of using optical sensors to identify the sources and timing of sewage contamination in surface water and storm sewers in real-time field settings.
link

Using optical sensors to detect sewage contamination in the Great Lakes

In the Great Lakes, large volumes of sewage never make it to wastewater treatment plants due to illicit discharges and leaking sewer infrastructure, but contamination can be difficult to detect. This study will define the utility and practicality of using optical sensors to identify the sources and timing of sewage contamination in surface water and storm sewers in real-time field settings.
Learn More

Development of a FluEgg Model for the St. Croix River

The USGS partnered with the Minnesota Department of Natural Resources to collect hydraulic and water chemistry data in the lower St. Croix River for development of a model that predicts the probability of successful egg hatching and survival of juvenile invasive carp over a range of water temperature and streamflow conditions.
link

Development of a FluEgg Model for the St. Croix River

The USGS partnered with the Minnesota Department of Natural Resources to collect hydraulic and water chemistry data in the lower St. Croix River for development of a model that predicts the probability of successful egg hatching and survival of juvenile invasive carp over a range of water temperature and streamflow conditions.
Learn More

Isoxaflutole Monitoring

This project is investigating the potential persistence of isoxaflutole, a pesticide, and its metabolites in groundwater and surface water near agricultural fields in Michigan.
link

Isoxaflutole Monitoring

This project is investigating the potential persistence of isoxaflutole, a pesticide, and its metabolites in groundwater and surface water near agricultural fields in Michigan.
Learn More

Arsenic in Minnesota groundwater—Occurrence and relation to hydrogeologic and geochemical factors

Geologic-sourced arsenic is common in Minnesota groundwater. Drinking-water managers, well owners, and well contractors need to know where and why high arsenic in groundwater is likely to occur in wells in order to take measures to protect public health. The USGS is assessing the spatial distribution of high arsenic groundwater in Minnesota, and identifying factors affecting arsenic mobilization.
link

Arsenic in Minnesota groundwater—Occurrence and relation to hydrogeologic and geochemical factors

Geologic-sourced arsenic is common in Minnesota groundwater. Drinking-water managers, well owners, and well contractors need to know where and why high arsenic in groundwater is likely to occur in wells in order to take measures to protect public health. The USGS is assessing the spatial distribution of high arsenic groundwater in Minnesota, and identifying factors affecting arsenic mobilization.
Learn More

Using leaf collection and street cleaning to reduce nutrients in urban stormwater

Decaying organic materials, like leaf litter, can release excess nutrients into local streams and lakes, causing eutrophication and algal blooms. To determine if a municipal leaf collection and street cleaning program can reduce nutrients in stormwater runoff, the USGS measured phosphorus and nitrogen in stormwater from residential areas in Madison, Wis.
link

Using leaf collection and street cleaning to reduce nutrients in urban stormwater

Decaying organic materials, like leaf litter, can release excess nutrients into local streams and lakes, causing eutrophication and algal blooms. To determine if a municipal leaf collection and street cleaning program can reduce nutrients in stormwater runoff, the USGS measured phosphorus and nitrogen in stormwater from residential areas in Madison, Wis.
Learn More

Fluvial geomorphology studies

Fluvial geomorphology studies provide an understanding of the physical processes responsible for shaping the character of streams and their riparian zones across both glaciatied and unglaciated regions of Wisconsin and the midwestern U.S.
link

Fluvial geomorphology studies

Fluvial geomorphology studies provide an understanding of the physical processes responsible for shaping the character of streams and their riparian zones across both glaciatied and unglaciated regions of Wisconsin and the midwestern U.S.
Learn More

Water-Quality Monitor Network in Michigan

The USGS operates a network of real-time water-quality monitoring stations that measure up to five physical parameters. The parameters are temperature, specific conductance, pH, dissolved oxygen, and turbidity. One to four of those parameters are measured at 26 sites, while all five parameters are measured at 13 sites. These data are used for decision making about hydroelectric power generation...
link

Water-Quality Monitor Network in Michigan

The USGS operates a network of real-time water-quality monitoring stations that measure up to five physical parameters. The parameters are temperature, specific conductance, pH, dissolved oxygen, and turbidity. One to four of those parameters are measured at 26 sites, while all five parameters are measured at 13 sites. These data are used for decision making about hydroelectric power generation...
Learn More

Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)

Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss.
link

Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)

Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss.
Learn More