Skip to main content
U.S. flag

An official website of the United States government

Climate Change

Filter Total Items: 57

Climate Change Effects on Coastal Marsh Foundation Species

Mangrove forests have migrated inland over the past few decades at many locations along the northern Gulf of Mexico coast. This expansion has been attributed to factors associated with climate change, such as increased salinity resulting from sea-level rise and longer intervals between winter freezes, which can kill cold-intolerant mangrove species.
link

Climate Change Effects on Coastal Marsh Foundation Species

Mangrove forests have migrated inland over the past few decades at many locations along the northern Gulf of Mexico coast. This expansion has been attributed to factors associated with climate change, such as increased salinity resulting from sea-level rise and longer intervals between winter freezes, which can kill cold-intolerant mangrove species.
Learn More

Evaluating Structural and Surface Elevation Recovery of Restored Mangroves

Hydrologic restoration is one of several approaches to rehabilitate mangroves on a large-scale. USGS evaluates how solely restoring tidal hydrologic flows affect the recovery of mangroves in Florida.
link

Evaluating Structural and Surface Elevation Recovery of Restored Mangroves

Hydrologic restoration is one of several approaches to rehabilitate mangroves on a large-scale. USGS evaluates how solely restoring tidal hydrologic flows affect the recovery of mangroves in Florida.
Learn More

Ecology of Greenhouse Gas Emissions from Coastal Wetlands

Wetlands have the potential to absorb large amounts of carbon dioxide via photosynthesis, and flooded soils have low oxygen levels which decrease rates of decomposition to promote the retention of soil carbon. However, the type of greenhouse gases emitted from wetlands varies by wetland type and soil condition. A suite of approaches are being used to assess fluxes of greenhouses gases, like...
link

Ecology of Greenhouse Gas Emissions from Coastal Wetlands

Wetlands have the potential to absorb large amounts of carbon dioxide via photosynthesis, and flooded soils have low oxygen levels which decrease rates of decomposition to promote the retention of soil carbon. However, the type of greenhouse gases emitted from wetlands varies by wetland type and soil condition. A suite of approaches are being used to assess fluxes of greenhouses gases, like...
Learn More

Stress Physiology, Scaling, and Water Use of Forested Wetland Trees and Stands

USGS investigates the eco-physiological responses of coastal forested wetland vegetation to envrionmental stressors, and what role vegetation may have in affecting local hydrological cycling as a result of these stressors.
link

Stress Physiology, Scaling, and Water Use of Forested Wetland Trees and Stands

USGS investigates the eco-physiological responses of coastal forested wetland vegetation to envrionmental stressors, and what role vegetation may have in affecting local hydrological cycling as a result of these stressors.
Learn More

Modeling Tidal Freshwater Forested Wetlands (TFFW) Habitat Changes for Land Management

As tidal freshwater forested wetlands - TFFWs - are influenced by salinty due to salt water intrusion, they may experience changes in plant community composition, growth, and productivity. Models are needed to predict vegetation community change or dieback, as well as changes in carbon sequestration and storage due to changing climate, drought, changes in freshwater discharge, elevated carbon...
link

Modeling Tidal Freshwater Forested Wetlands (TFFW) Habitat Changes for Land Management

As tidal freshwater forested wetlands - TFFWs - are influenced by salinty due to salt water intrusion, they may experience changes in plant community composition, growth, and productivity. Models are needed to predict vegetation community change or dieback, as well as changes in carbon sequestration and storage due to changing climate, drought, changes in freshwater discharge, elevated carbon...
Learn More

Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States

Tidal freshwater forested wetlands - TFFWs - can be found in the upper intertidal areas of many estuaries and act as a transition between coastal marshes and bottomland hardwood wetlands. However, it is because of their location that makes them vulnerable to sea-level rise, and they are constantly transitioning to different wetland types. USGS addresses how various processes are affected in TFFWs...
link

Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States

Tidal freshwater forested wetlands - TFFWs - can be found in the upper intertidal areas of many estuaries and act as a transition between coastal marshes and bottomland hardwood wetlands. However, it is because of their location that makes them vulnerable to sea-level rise, and they are constantly transitioning to different wetland types. USGS addresses how various processes are affected in TFFWs...
Learn More

Restoration of Climate Change-Induced Retreat of Tidally Influenced Freshwater Forested Wetlands

Wetlands in river deltas - like the Mississippi River Delta Plain - may be more vulnerable to sea-level rise. Historically, coastal wetlands responded to these changes by increasing surface elevation or migrating up-slope. USGS conducts research to identify the biogeochemical influences on sediment addition in coastal wetland areas.
link

Restoration of Climate Change-Induced Retreat of Tidally Influenced Freshwater Forested Wetlands

Wetlands in river deltas - like the Mississippi River Delta Plain - may be more vulnerable to sea-level rise. Historically, coastal wetlands responded to these changes by increasing surface elevation or migrating up-slope. USGS conducts research to identify the biogeochemical influences on sediment addition in coastal wetland areas.
Learn More

Factors Controlling Resilience and Resistance of Coastal Salt Marshes to Sudden Marsh Dieback

Sudden Marsh Dieback - SMD - has been documented for the past two decades throughout coastal areas of the United States. With these large-scale diebacks comes the loss of ecosystem functions and services. USGS scientsts use field work and greenhouse studies to investigate the factors that control the resilience and resistance of coastal salt marshes to SMD.
link

Factors Controlling Resilience and Resistance of Coastal Salt Marshes to Sudden Marsh Dieback

Sudden Marsh Dieback - SMD - has been documented for the past two decades throughout coastal areas of the United States. With these large-scale diebacks comes the loss of ecosystem functions and services. USGS scientsts use field work and greenhouse studies to investigate the factors that control the resilience and resistance of coastal salt marshes to SMD.
Learn More

Salinity Intrusion Impacts from Hurricane Sandy in Tidal Freshwater Swamps, Delmarva Peninsula, Mid-Atlantic Coast, USA

When it comes to hurricanes, wind and storm surge effect vegetation differently. USGS anlyzes these differences following Hurricane Sandy to help inform management on storm mitigation and long-term planning.
link

Salinity Intrusion Impacts from Hurricane Sandy in Tidal Freshwater Swamps, Delmarva Peninsula, Mid-Atlantic Coast, USA

When it comes to hurricanes, wind and storm surge effect vegetation differently. USGS anlyzes these differences following Hurricane Sandy to help inform management on storm mitigation and long-term planning.
Learn More

Structural Equation Modeling in Support of Conservation

Understanding systems sometimes requires approaches that allow for both the discovery of the a system's structure and the estimation of its implications. Structural Equation Modeling - SEM - is one tool scientists use to better understand the complex world in which we live.
link

Structural Equation Modeling in Support of Conservation

Understanding systems sometimes requires approaches that allow for both the discovery of the a system's structure and the estimation of its implications. Structural Equation Modeling - SEM - is one tool scientists use to better understand the complex world in which we live.
Learn More

Plant Community Dynamics in a Mangrove-to-Marsh Transition Zone

Mangroves will compete with salt marsh plants in transitional areas, and recent studies have documented the expansion of mangroves into marsh habitats. To better understand the plant community dynamics in this transition zone, USGS scientists are tracking vegeation changes over time in south Florida.
link

Plant Community Dynamics in a Mangrove-to-Marsh Transition Zone

Mangroves will compete with salt marsh plants in transitional areas, and recent studies have documented the expansion of mangroves into marsh habitats. To better understand the plant community dynamics in this transition zone, USGS scientists are tracking vegeation changes over time in south Florida.
Learn More

Surface Elevation Vulnerability of Coastal Forested Wetlands to Sea-Level Rise

Wetlands vary in their abilities to keep up with sea-level rise; they either adjust vertically and/or move inland. USGS is working with partners around the world to measure rates of surface elevation change relative to local sea-level rise.
link

Surface Elevation Vulnerability of Coastal Forested Wetlands to Sea-Level Rise

Wetlands vary in their abilities to keep up with sea-level rise; they either adjust vertically and/or move inland. USGS is working with partners around the world to measure rates of surface elevation change relative to local sea-level rise.
Learn More