Wisconsin Water Science Center

Lake Water Quality

Filter Total Items: 17
Photo of stormwater runoff flowing into a storm drain
Date Published: November 20, 2017
Status: Active

GLRI Urban Stormwater Monitoring

The GLRI Urban Stormwater Monitoring effort brings together the expertise of the USGS with local and national partners to assess the ability of green infrastructure to reduce stormwater runoff in Great Lakes urban areas.

Photo of a typical edge-of-field surface site
Date Published: June 27, 2016

Edge-of-field monitoring

Edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which can threaten the health of streams, rivers, and lakes. Edge-of-field monitoring assesses the quantity and quality of agricultural runoff and evaluates the effectiveness of conservation practices that aim to reduce nutrient loss.

Volatile mercury sampling at Yellowstone National Park
Date Published: April 22, 2016

Mercury studies

The USGS Mercury Research Lab is a national leader in advancing mercury research and science, specializing in low-level mercury speciation and isotope analysis and mercury-source fingerprinting. The MRL leads national cutting-edge collaborative studies, including state-of-the-art sample analysis, methods development for field and lab procedures, and data interpretation and dissemination.

Photo of the Camp Manito-wish YMCA boat house on Lake Boulder, Wis., during fall
Date Published: April 19, 2016

Lake monitoring and research

Studying lakes provides an improved understanding of lake ecosystem dynamics and valuable information that helps lead to sound lake-management policies. The USGS collects hydrologic data in lake settings, studies water and nutrient budget development, conducts source-loading analysis, explores groundwater interactions, and performs lake water-quality modeling.

Slideshow of Gary City Hall, before and after redevelopment with green infrastructure
Date Published: March 27, 2016
Status: Active

Assessing stormwater reduction using green infrastructure: Gary City Hall (Gary, Ind.)

The effectiveness of green infrastructure (rain gardens and decreased impervious surfaces) at reducing stormwater runoff is being assessed at a redevelopment project at Gary City Hall (Gary, Indiana). This study will evaluate pre- and post-construction hydrologic conditions using data collected by monitoring storm-sewer flow, groundwater levels, soil moisture, and meteorological conditions....

Contacts: David C Lampe (IN), Brenda Scott-Henry
Photo of minor street flooding along Niagara Street in Buffalo, New York
Date Published: March 27, 2016
Status: Active

Assessing stormwater reduction using green infrastructure: Niagara River Greenway Project (Buffalo, NY)

The effectiveness of green infrastructure (porous asphalt, planter boxes, rain gardens, and the removal of impervious pavements) at reducing stormwater runoff is being assessed at the Niagara Street redevelopment project in Buffalo, New York. This study will monitor pre- and post-construction storm-sewer flow, groundwater levels, evapotranspiration, precipitation, and soil moisture.

Contacts: Brett Hayhurst, Valerie E Shao, Julie Barrett O'Neill
Illustration of typical green infrastructure installation for RecoveryPark
Date Published: March 27, 2016
Status: Active

Assessing stormwater reduction through green infrastructure: RecoveryPark (Detroit, Mich.)

The effectiveness of green infrastructure (including urban land conversion and bioswales) at reducing stormwater runoff is being assessed at RecoveryPark, a redeveloped urban farm in Detroit, Michigan. This study will monitor pre- and post-construction storm-sewer flow, groundwater levels, precipitation, and potential evapotranspiration.

Contacts: Chris Hoard, Stephanie Beeler, Ralph Haefner, Danielle Green, Bill Shuster, Donald Carpenter, Gary Wozniak
Photos show change in water clarity in agricultural runoff before and after a grassed waterway was installed
Date Published: March 26, 2016

Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)

Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss....

Photograph of Pheasant Branch Creek at U.S. Geological Survey streamflow-gaging station (05427948),
Date Published: March 22, 2016

Dane County water-quality monitoring program

Many Dane County, Wis., streams and lakes have been degraded due to excessive nutrients and sediment contributed primarily by agriculture and urbanization. The goal is to build a long-term base of streamflow, lake stage, and water-quality data essential for water-resource planning and assessment purposes for streams and lakes in Dane County, with a focus on the Yahara River Basin.

Photo of a boy playing in the water on a Wisconsin beach.
Date Published: March 21, 2016

Beach health in Wisconsin

Beach water-quality (beach health) data is collected both coastal and inland Wisconsin beaches. The data is collected and analyzed by multiple agencies throughout Wisconsin including local health departments, universities, state agencies, and federal agencies including the USGS.

Contacts: Steven R Corsi
Illustration showing potential sources of pathogen contamination for Lake Michigan beaches
Date Published: March 10, 2016

Environmental factors and risk estimation for waterborne pathogens at three Great Lakes beaches

The goals of this study were to quantify pathogen concentrations in water at three Lake Michigan beaches, identify environmental factors that influence pathogen occurrence and variability, and to estimate health risks for recreational swimmers.

Contacts: Steven R Corsi, Michelle A Lutz, Mark Borchardt, Tucker Burch, Susan Spencer
Aerial photo of Lake Winnebago and Lake Butte des Morts
Date Published: March 1, 2016

Winnebago pool lakes: Hydrology, water quality, and response to simulated changes in phosphorus loading

The Winnebago Pool Lakes are shallow, productive drainage lakes that have accumulated nutrients from its mixed agricultural/forest watershed and from the Fox River. High phosphorus concentrations often result in severe blue-green algae blooms that can produce harmful toxins. The USGS is evaluating the water quality and phosphorus budget of each lake and modeling eutrophication responses.