Wisconsin Water Science Center

Nutrients, Contaminants, and Pathogens

While the Wisconsin Water Science Center investigates a wide variety of factors affecting water quality, there are some issues that need particular focus due to their potential to enter the environment and cause known or suspected adverse ecological and/or human health effects. They originate from a wide variety of sources and causes, including industry, agriculture, urbanization, human and animal waste, and nature itself. They may be found in high quantities and cause immediate effects, or occur in very low quantities that only cause problems after long-term exposure. They may even be safe and beneficial at lower amounts, but harmful when overused. This group of WI WSC projects addresses current water-quality issues that are causing concern among water-resource managers and the public, such as excess nutrients, chemical pollutants, human and animal pathogens, and the biological effects of these contaminants on natural ecosystems.

Browse WI WSC science related to:
Human and animal pathogens
Biological effects

Filter Total Items: 29
Photo of a typical edge-of-field surface site
Date Published: June 27, 2016

Edge-of-field monitoring

Edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which can threaten the health of streams, rivers, and lakes. Edge-of-field monitoring assesses the quantity and quality of agricultural runoff and evaluates the effectiveness of conservation practices that aim to reduce nutrient loss.

Volatile mercury sampling at Yellowstone National Park
Date Published: April 22, 2016

Mercury studies

The USGS Mercury Research Lab is a national leader in advancing mercury research and science, specializing in low-level mercury speciation and isotope analysis and mercury-source fingerprinting. The MRL leads national cutting-edge collaborative studies, including state-of-the-art sample analysis, methods development for field and lab procedures, and data interpretation and dissemination.

Image showing a schematic of the SPARROW model components
Date Published: April 16, 2016

SPARROW nutrient modeling: Estimation of nutrient and sediment transport

SPARROW (SPAtially Referenced Regressions On Watershed attributes) models track the transport of nutrients (particularly nitrogen and phosphorus) from local inland watersheds to regional, coastal waters by explaining spatial patterns in stream water-quality conditions in relation to human activities and natural processes.

Photos show change in water clarity in agricultural runoff before and after a grassed waterway was installed
Date Published: March 26, 2016

Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)

Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss....

Photo of a snow plow with a load of road salt
Date Published: March 26, 2016

Evaluating chloride trends due to road-salt use and its impacts on water quality and aquatic organisms

Chloride, a key component of road salt, is soluble, highly mobile in water, and, at high concentrations, can be toxic to aquatic vegetation and wildlife. USGS scientists have been analyzing temporal, seasonal, and environmental trends in chloride concentrations across the U.S. to determine the effects that road salt may be having on water quality and aquatic organisms.

Photo of the depth-integrated sample arm (DISA)
Date Published: March 25, 2016

Particle-size distribution from urban land use and source areas

Many control options for sediments and associated contaminants in storm-water runoff from urban areas rely on settling of solids. This study characterizes particle-size distributions in urban storm-water runoff from specific source areas and land-use categories, with the hopes of assisting watershed managers and engineers design better control devices for reducing sediment in urban runoff.

Final installation of permeable pavement study test plots
Date Published: March 24, 2016

Evaluating the potential benefits of permeable pavement on the quantity and quality of stormwater runoff

Permeable pavement is a porous urban surface which catches precipitation and surface runoff, storing it in the reservoir while slowly allowing it to infiltrate into the soil below. This study will evaluate how well different types of permeable pavement reduces the amount of pollutants and runoff volume.

Photgraph of USGS employee surveying snowbanks at General Mitchell International Airport
Date Published: March 23, 2016

Evaluating the impacts of aircraft deicers in runoff from General Mitchell International Airport, Milwaukee, Wis.

Chemicals used to deice planes at General Mitchell International Airport in Milwaukee may be entering nearby streams in concentrations that may be harmful to aquatic life. This project will investigate the toxicity of decing chemicals, evaluate their impact on receiving streams, and assess changes in water quality in response to the implementation of deicer management at General Mitchell...

Contacts: Steven R Corsi
Photograph of Pheasant Branch Creek at U.S. Geological Survey streamflow-gaging station (05427948),
Date Published: March 22, 2016

Dane County water-quality monitoring program

Many Dane County, Wis., streams and lakes have been degraded due to excessive nutrients and sediment contributed primarily by agriculture and urbanization. The goal is to build a long-term base of streamflow, lake stage, and water-quality data essential for water-resource planning and assessment purposes for streams and lakes in Dane County, with a focus on the Yahara River Basin.

Photo of a boy playing in the water on a Wisconsin beach.
Date Published: March 21, 2016

Beach health in Wisconsin

Beach water-quality (beach health) data is collected both coastal and inland Wisconsin beaches. The data is collected and analyzed by multiple agencies throughout Wisconsin including local health departments, universities, state agencies, and federal agencies including the USGS.

Contacts: Steven R Corsi
Photo of edge-of-field subsurface tile and surface sites.
Date Published: March 20, 2016

Edge-of-field monitoring: Discovery Farms

The USGS is cooperating with Discovery Farms to understand agriculture’s impact on the environment and help producers find ways to minimize their impact while remaining economically viable. Edge-of-field or subsurface tile monitoring stations measure runoff-event volume, including snowmelt, and collect samples which are analyzed for suspended sediment, phosphorus, nitrogen, and chloride.

Photo showing traveling-gun manure irrigation system at a Wisconsin farm
Date Published: March 14, 2016

Evaluating the risks of airborne pathogens from manure irrigation

Manure irrigation, which is the application of liquid animal manure by irrigation, is increasing. However, the risk of airborne pathogen transmission from manure to humans during spray irrigation is not well-understood. To determine how pathogens can spread using manure irrigation, LIDE measured air concentrations and risk of illness due to exposure to pathogens in the irrigation spray.

Contacts: Joel P Stokdyk, Mark Borchardt, Tucker Burch