Wisconsin Water Science Center

Water Quality

Water quality is measure of the suitability of water for a particular use based on selected physical, chemical, and biological characteristics. Water-quality monitoring is used to help water-resource managers understand and avert potential negative effects of man-made and natural stresses on water resources. The Wisconsin Water Science Center investigates water-quality issues using new technologies and techniques to study the physical, chemical, biological, geological interactions in rivers, streams, lakes, and groundwater in Wisconsin and across the Nation. Some of the issues we address include the occurrence, distribution, trends, and modeling of pollutants; the relationship between ecological responses and water quality; and the relationships between natural factors, land use, and water quality, in both rural and urban settings.

Browse WI WSC science related to:
Stream water quality
Lake water quality
Groundwater water quality
Urban water quality
Rural water quality

Filter Total Items: 45
Photo of stormwater runoff flowing into a storm drain
Date Published: November 20, 2017
Status: Active

GLRI Urban Stormwater Monitoring

The GLRI Urban Stormwater Monitoring effort brings together the expertise of the USGS with local and national partners to assess the ability of green infrastructure to reduce stormwater runoff in Great Lakes urban areas.

Photo of a typical edge-of-field surface site
Date Published: June 27, 2016

Edge-of-field monitoring

Edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which can threaten the health of streams, rivers, and lakes. Edge-of-field monitoring assesses the quantity and quality of agricultural runoff and evaluates the effectiveness of conservation practices that aim to reduce nutrient loss.

Volatile mercury sampling at Yellowstone National Park
Date Published: April 22, 2016

Mercury studies

The USGS Mercury Research Lab is a national leader in advancing mercury research and science, specializing in low-level mercury speciation and isotope analysis and mercury-source fingerprinting. The MRL leads national cutting-edge collaborative studies, including state-of-the-art sample analysis, methods development for field and lab procedures, and data interpretation and dissemination.

Photo of the discharge from an aquifer pumping test
Date Published: April 20, 2016

Groundwater monitoring and research

Groundwater is an important water resource for Wisconsin. The USGS collects information on the quality and quantity of Wisconsin's groundwater and conducts advanced modeling of groundwater flow and groundwater/surface-water systems. The USGS also evaluates the effects of water-use, land-use, and climate change on groundwater, surface-water, and the ecosystems that rely on them.

Photo of the Camp Manito-wish YMCA boat house on Lake Boulder, Wis., during fall
Date Published: April 19, 2016

Lake monitoring and research

Studying lakes provides an improved understanding of lake ecosystem dynamics and valuable information that helps lead to sound lake-management policies. The USGS collects hydrologic data in lake settings, studies water and nutrient budget development, conducts source-loading analysis, explores groundwater interactions, and performs lake water-quality modeling.

Image showing a schematic of the SPARROW model components
Date Published: April 16, 2016

SPARROW nutrient modeling: Estimation of nutrient and sediment transport

SPARROW (SPAtially Referenced Regressions On Watershed attributes) models track the transport of nutrients (particularly nitrogen and phosphorus) from local inland watersheds to regional, coastal waters by explaining spatial patterns in stream water-quality conditions in relation to human activities and natural processes.

Photograph of an eroding bluff on North Fish Creek
Date Published: April 15, 2016

Fluvial geomorphology studies

Fluvial geomorphology studies provide an understanding of the physical processes responsible for shaping the character of streams and their riparian zones across both glaciatied and unglaciated regions of Wisconsin and the midwestern U.S.

Photos of TC Chamberlin Modeling Center computers and servers
Date Published: March 29, 2016
Status: Active

TC Chamberlin Modeling Center

The TC Chamberlin Modeling Center provides one-stop access to advanced computing so no project is limited by a lack of computer power. The Center can provide hardware access, assistance with migration and implementation, and training. We also develop, test, and disseminate state-of-the-art computational and analytical techniques and tools so models can be more effectively used in decision-...

Slideshow of Gary City Hall, before and after redevelopment with green infrastructure
Date Published: March 27, 2016
Status: Active

Assessing stormwater reduction using green infrastructure: Gary City Hall (Gary, Ind.)

The effectiveness of green infrastructure (rain gardens and decreased impervious surfaces) at reducing stormwater runoff is being assessed at a redevelopment project at Gary City Hall (Gary, Indiana). This study will evaluate pre- and post-construction hydrologic conditions using data collected by monitoring storm-sewer flow, groundwater levels, soil moisture, and meteorological conditions....

Contacts: David C Lampe (IN), Brenda Scott-Henry
Photo of minor street flooding along Niagara Street in Buffalo, New York
Date Published: March 27, 2016
Status: Active

Assessing stormwater reduction using green infrastructure: Niagara River Greenway Project (Buffalo, NY)

The effectiveness of green infrastructure (porous asphalt, planter boxes, rain gardens, and the removal of impervious pavements) at reducing stormwater runoff is being assessed at the Niagara Street redevelopment project in Buffalo, New York. This study will monitor pre- and post-construction storm-sewer flow, groundwater levels, evapotranspiration, precipitation, and soil moisture.

Contacts: Brett Hayhurst, Valerie E Shao, Julie Barrett O'Neill
Illustration of typical green infrastructure installation for RecoveryPark
Date Published: March 27, 2016
Status: Active

Assessing stormwater reduction through green infrastructure: RecoveryPark (Detroit, Mich.)

The effectiveness of green infrastructure (including urban land conversion and bioswales) at reducing stormwater runoff is being assessed at RecoveryPark, a redeveloped urban farm in Detroit, Michigan. This study will monitor pre- and post-construction storm-sewer flow, groundwater levels, precipitation, and potential evapotranspiration.

Contacts: Chris Hoard, Stephanie Beeler, Ralph Haefner, Danielle Green, Bill Shuster, Donald Carpenter, Gary Wozniak
Photos show change in water clarity in agricultural runoff before and after a grassed waterway was installed
Date Published: March 26, 2016

Edge-of-field monitoring: Great Lakes Restoration Initiative (GLRI)

Great Lakes Restoration Initiative edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which threaten the health of the Great Lakes. The USGS supports these efforts by utilizing edge-of-field monitoring to assess the quantity and quality of agricultural runoff and evaluate conservation practices that aim to reduce sediment and nutrient loss....