Science Team about Energy and Plains and Potholes Environments (STEPPE)

Science Center Objects

Brine Contamination to Plains and Potholes Environments from Energy Development in the Williston Basin

In the United States, the Williston Basin occupies 143,000 square miles and includes portions of Montana, North Dakota, and South Dakota. Superimposed over this landscape is the Prairie Pothole Region (PPR) which includes critical wetland and grassland habitats of importance to breeding, nesting, and migrating waterfowl, and wetland and grassland birds. A potential impact of oil field activities on these important habitats is brine contamination from co-produced waters (Investigations of Waters Injected or Produced for Energy Development Project) that leach from oil well reserve pits, injection wells, and transport lines. Previous studies have identified contamination of wetlands and groundwater resources, including drinking water aquifers, located on U.S. Fish and Wildlife Service (USFWS), tribal, and public lands, and numerous groups have expressed concern over the potential risk of contamination. Currently, the extent of such contamination across the Williston Basin is unknown, and there is a need for scientific-based information to assess this threat.

Karen Nelson, USFWS, collecting EM31 data at Rabenberg site.

Karen Nelson, USFWS, collecting EM31 data at Rabenberg site near Goose Lake

(Credit: Seth Haines, USGS. Public domain.)

Recently Completed and Ongoing USGS Investigations in the Williston Basin

USGS Co-Principal Investigators and Affiliations - see contact info on right side of page

Other Co-PIs and Affiliations:

Mike Borgreen - USFWS Medicine Lake National Wildlife Refuge 
Joel Galloway - USGS North Dakota Water Science Center
Kevin Johnson - USFWS Region 6, Ecological Services 
Karen Nelson - USFWS Region 6, Ecological Services
Jon Reiten - Montana Bureau of Mines and Geology 
David Rouse - USFWS Region 6, Ecological Services 

    Non-USGS References

    For USGS-authored references, please visit the Publications tab. Below is a list of non-USGS authored references.

    Frost, C.D., and Toner, R.N. Strontium isotopic identification of water–rock interaction and ground water mixing. Ground water, 42 (3) (2004), pp. 418-432 https://doi.org/10.1111/j.1745-6584.2004.tb02689.x

    Iampen, H.T. and Rsotron, B.J. Hydrogeochemistry of pre-Mississippian brines, Williston Basin, Canada–USA Journal of Geochemical Exploration, 69–70 (2000), pp. 29-35 https://doi.org/10.1016/S0375-6742(00)00007-8

    Naftz, D.L., Peterman, Z.E., and Springer, L.E. Using δ87 Sr values to identify sources of salinity to a freshwater aquifer, Greater Aneth Oil Field, Utah, USA. Chemical Geology, 141 (3–4) (1997), pp. 195-209 https://doi.org/10.1016/S0009-2541(97)00063-6

    Quattrocchi F. et al. Strontium Isotope (87sr/86sr) Chemistry in Produced Oil Field Waters: The IEA C02 Monitoring and Storage Project. In: Lombardi S., Altunina L., Beaubien S. (eds) Advances in the Geological Storage of Carbon Dioxide. Nato Science Series: IV: Earth and Environmental Sciences, 65 (2006) Springer, Dordrecht https://doi.org/10.1007/1-4020-4471-2_20

    Rittenhouse, G., Fulton III, R.B., Grabowski, R.J. and Bernard, J.L. (1969) Minor Elements in Oil-Field Waters Chemical Geology, 4 (1–2), pp. 189-209 https://doi.org/10.1016/0009-2541(69)90045-X

    Rostron, B.J. and Holmden, C. Fingerprinting formation-waters using stable isotopes, Midale Area, Williston Basin, Canada Journal of Geochemical Exploration, 69–70 (2000), pp. 219-223 https://doi.org/10.1016/S0375-6742(00)00024-8

    Shand, P., D.P.F. Darbyshire, A.J. Love, and W.M. Edmunds Sr isotopes in natural waters: Applications to source characterisation and water–rock interaction in contrasting landscapes, 24 (4) (2009), pp. 574-586 https://doi.org/10.1016/j.apgeochem.2008.12.011

    Wilson, T.P. and Long, D.T. Geochemistry and isotope chemistry of Michigan Basin brines: Devonian formations, 8 (1) (1993), pp. 81-100 https://doi.org/10.1016/0883-2927(93)90058-O