Skip to main content
U.S. flag

An official website of the United States government

Publications

Publications, scientific literature, and information products from the Land Change Science Program.

Filter Total Items: 562

Development of soil radiocarbon profiles in a reactive transport framework

Today, there is a greater appreciation for the importance of the physical protection of carbon (C) through interactions with mineral surfaces, isolation from microbes, and the important role of transport in shaping soil properties and controlling moisture limitations on decomposition. As our paradigm for soil organic carbon (SOC) preservation changes, so too should our representation of the underl
Authors
Jennifer Druhan, Corey Lawrence

Prototyping a methodology for long-term (1680-2100) historical-to-future landscape modeling for the conterminous United States

Land system change has been identified as one of four major Earth system processes where change has passed a destabilizing threshold. A historical record of landscape change is required to understand the impacts change has had on human and natural systems, while scenarios of future landscape change are required to facilitate planning and mitigation efforts. A methodology for modeling long-term his
Authors
Jordan Dornbierer, Steve Wika, Charles Robison, Gregory Rouze, Terry L. Sohl

Quantifying slopes as a driver of forest to marsh conversion using geospatial techniques: Application to Chesapeake Bay coastal-plain, USA

Coastal salt marshes, which provide valuable ecosystem services such as flood mitigation and carbon sequestration, are threatened by rising sea level. In response, these ecosystems migrate landward, converting available upland into salt marsh. In the coastal-plain surrounding Chesapeake Bay, United States, conversion of coastal forest to salt marsh is well-documented and may offset salt marsh loss
Authors
Grace Damore Molino, Zafer Defne, Alfredo Aretxabaleta, Neil K. Ganju, Joel A. Carr

Broad-scale surface and atmospheric conditions during large fires in south-central Chile

The unprecedented size of the 2017 wildfires that burned nearly 600,000 hectares of central Chile highlight a need to better understand the climatic conditions under which large fires develop. Here we evaluate synoptic atmospheric conditions at the surface and free troposphere associated with anomalously high (active) versus low (inactive) months of area burned in south-central Chile (ca. 32–41° S
Authors
David B. McWethy, René Garreaud, Andrés Holz, Gregory T. Pederson

Growth and defense characteristics of whitebark pine (Pinus albicaulis) and lodgepole pine (Pinus contorta var latifolia) in a high-elevation, disturbance-prone mixed-conifer forest in northwestern Montana, USA

Recent, widespread tree mortality in the western U.S. resulting from changes in climate, pathogens, insect activity, and forest management practices has led to concerns for many ecologically and culturally important species. Within conifers, resin-based defenses have long been recognized as a primary defense mechanism against a variety of insects and pathogens. Oleoresin produced by trees contain
Authors
Nicholas E. Kichas, Amy M. Trowbridge, Kenneth F. Raffa, Shealyn C. Malone, Sharon M. Hood, Richard G. Everett, David B. McWethy, Gregory T. Pederson

Biodiversity effects on grape quality depend on variety and management intensity

Interactions between plants can be beneficial, detrimental or neutral. In agricultural systems, competition between crop and spontaneous vegetation is a major concern. We evaluated the relative support for three non-exclusive ecological hypotheses about interactions between crop and spontaneous plants based on competition, complementarity or facilitation.The study was conducted in Swiss vineyards
Authors
Magdalena Steiner, James Grace, Sven Bacher

A graphical causal model for resolving species identity effects and biodiversity–ecosystem function correlations: comment

In a recent paper, Schoolmaster, Zirbel, and Cronin (SZC) (2020) claim “Formal causal analysis show[s] that biodiversity–ecosystem function (BEF) correlations are non-causal associations.” If this conclusion is accepted as true, it suggests a reconsideration of much of our current understanding of how biodiversity relates to the functioning of ecosystems. On the surface, it is easy to spot clear s
Authors
James B. Grace, Michel Loreau, Bernhard Schmid

Resistance, resilience, and recovery of dryland soil bacterial communities across multiple disturbances

Dryland ecosystems are sensitive to perturbations and generally slow to recover post disturbance. The microorganisms residing in dryland soils are especially important as they contribute to soil structure and nutrient cycling. Disturbance can have particularly strong effects on dryland soil structure and function, yet the natural resistance and recovery of the microbial components of dryland soils
Authors
Blaire Steven, Michala Lee Phillips, Jayne Belnap, La Verne Gallegos-Graves, Cheryl R. Kuske, Sasha C. Reed

Investigating vegetation responses to underground nuclear explosions through integrated analyses

Vegetation has the potential to respond to underground nuclear explosions, yet these links have not been fully explored. Given the lack of previously described signatures, the changes in vegetation are possibly subtle. The integration of multiple different data streams is potentially a useful approach to improve signal detection. Here, we investigate whether semi-arid vegetation growth patterns re
Authors
Kurt Solander, Adam D. Collins, Erika Swanson, Ellis Margolis, Brandon Crawford, Elizabeth Miller, Min Chen, Anita Lavadie-Bulnes, Max Ryan, Isaac Borrego, Sanna Sevanto, Emily Schultz-Fellenz

Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions

Wetland methane (CH4) emissions (FCH4) are important in global carbon budgets and climate change assessments. Currently, FCH4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent FCH4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that FCH4 are often c
Authors
Kuang-Yu Chang, William J. Riley, Sara H. Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle B. Delwiche, Ankur R. Desai, Eugenie S. Euskirchen, Matthias Goeckede, Thomas Friborg, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Manuel Helbig, Trevor F. Keenan, Minseok Kang, Ken Krauss, Annalea Lohila, Bhaskar Mitra, Ivan Mammarella, Akira Miyata, Mats B. Nilsson, Walter C. Oechel, Akso Noormets, Matthias Peichl, Michele L. Reba, Janne Rinne, Dario Papale, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina VR Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C.I. Tang, Margaret S. Torn, Eeva-Stiina Tuittila, Carlo Trotta, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, Lisamarie Windham-Myers, Zhen Zhang, Donatella Zona

Regional ensemble modeling reduces uncertainty for digital soil mapping

Recent country and continental-scale digital soil mapping efforts have used a single model to predict soil properties across large regions. However, different ecophysiographic regions within large-extent areas are likely to have different soil-landscape relationships so models built specifically for these regions may more accurately capture these relationships relative to a ‘global’ model. We ask
Authors
Colby C. Brungard, Travis W. Nauman, Michael C. Duniway, Kari E. Veblen, Kyle C. Nehring, David S. White, Shawn W. Salley, Julius Anchang

Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales

While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and
Authors
Sarah Knox, Sheel Bansal, Gavin McNicol, Karina Schafer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle B. Delwiche, Ankur R. Desai, Eugenie S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, William Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet-Chouinard, Mathias Goeckede, Joe Melton, Oliver Sonnentag, Timo Vesala, Eric Ward, Zhen Zhang, Sarah Feron, Zutao Ouyang, Angela C I Tang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed Sparks, Eeva-Stiina Tuittila, George Vourlitis, Guan X Wong, Lisamarie Windham-Myers, Benjamin Poulter, Robert B. Jackson