Climate Research and Development Program


Drylands, characterized by water scarcity, comprise 83% of DOI-managed lands. Drylands are highly vulnerable to erosion by wind and water and are affected by land use (e.g., grazing) and disturbance (e.g., fire). The Climate R&D Program conducts research to understand the primary climatic and non-climatic drivers of change in dryland soils and vegetation to inform management decisions.

Filter Total Items: 7
Date published: December 2, 2020
Status: Active

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and...

Date published: November 10, 2020
Status: Active

Quaternary Hydroclimate Records of Spring Ecosystems

Desert springs and wetlands are among the most biologically productive, diverse, and fragile ecosystems on Earth. They are home to thousands of rare, endemic, and endangered plants and animals and reflect the availability and health of emergent groundwater. Despite the ecological importance of these wetlands, our knowledge of how they might respond to predicted future climate change is limited...

Date published: April 15, 2019
Status: Active

Effects of disturbance and drought on the forests and hydrology of the Southern Rocky Mountains

Climate-related forest disturbances, particularly drought-induced tree mortality and large, high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies).  Our research combines long-term place-based ecological data, diverse methods (e.g., paleo, remote-sensing), and networking approaches to...

Date published: February 25, 2019
Status: Active

Drylands are highly vulnerable to climate and land use changes: what ecosystem changes are in store?

Improper land use during drought has been a major driver of land degradation in drylands globally, especially in the western U.S.  Increasing aridity in western U.S. drylands under future climates will exacerbate risks associated with drought and land use decisions. This project provides critical observational, experimental, and modelling evidence to support our DOI partners with decision...

Date published: July 14, 2017
Status: Active

Paleohydrology of Desert Wetlands

Springs and wetlands are among the most highly threatened ecosystems on Earth. Although geographically limited, they support more than 20% of all the threatened and endangered species in the United States. Scientists from the U.S. Geological Survey are examining the rock record to determine how springs and wetlands responded to abrupt climate change during prehistoric times and the recent...

Date published: July 14, 2017
Status: Completed

Terrestrial Rates and Amplitudes of Changes in Ecoclimate Systems (TRACES)

Vegetation changes caused by climatic variations and/or land use may have large impacts on forests, agriculture, rangelands, natural ecosystems, and endangered species. Climate modeling studies indicate that vegetation cover, in turn, has a strong influence on regional climates, and this must be better understood before models can estimate future environmental conditions. To address these...

Contacts: Bob Thompson
Date published: July 14, 2017
Status: Active

Terrestrial Records of Holocene Climate Change: Fire, climate and humans

Large wildfires have raged across the western Americas in the past decade including the Las Conchas, New Mexico fire that burned 44,000 acres in a single day in 2011 (Orem and Pelletier, 2015, Geomorphology 232: 224-238, and references therein), the 2016 Fort McMurray, Alberta fire that required evacuating an entire city, and the 2015 Alaskan fire season that burned more than 5 million acres (...