Land Change Science Program

Cycling of Carbon and Nutrients

Nutrient and carbon cycling through the atmosphere, ocean, soils, and biota vary with changing climate and land use over multiple temporal and spatial scales. The Land Change Science Program conducts research to reduce  uncertainties in projecting changes in the carbon cycle in response to future changes in land use and climate.

Filter Total Items: 16
Date published: February 26, 2020
Status: Active

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater.  As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One...

Contacts: Ken Krauss, Ph.D., Gregory Noe, Camille LaFosse Stagg, Ph.D., Hongqing Wang, Ph.D., Eric J Ward, Ph.D., Jamie A. Duberstein, William H. Conner, Zhaohua Dai, Thomas L. O'Halloran
Date published: June 17, 2019
Status: Active

Integrated Biogeochemical Research and Assessment

This project integrates soil and ecosystem data to impute important soil properties for hydric soils and wetlands. The work hopes to answer the questions: How have historical changes in biogeochemical processes affected present-day and potential future interactions among land, water, and ecosystem resources? How can improved understanding of historical and present-day biogeochemical...

Date published: May 30, 2019
Status: Active

Wetlands in the Quaternary

Wetlands accumulate organic-rich sediment or peat stratigraphically, making them great archives of past environmental change. Wetlands also act as hydrologic buffers on the landscape and are important to global biogeochemical cycling. This project uses wetland archives from a range of environments to better understand how vegetation, hydrology, and hydroclimate has changed on decadal to multi-...

Date published: April 24, 2019
Status: Active

Accelerating changes and transformations in western mountain lakes

While research into eutrophication has been a cornerstone of limnology for more than 100 years, only recently has it become a topic for the remote alpine lakes that are icons of protected national parks and wilderness areas. National park lakes in the western U.S. are threatened by global change, specifically air pollution, warming, and their interactions, and the problem is quickly worsening...

Date published: April 17, 2019
Status: Active

Water Quality Across Regional Stream Networks: The Influence of Land Cover and Land Use, Climate, and Biogeochemical Processing on Spatiotemporal Variance

Land cover and land use (LC/LU), climate, and biogeochemical processing are significant drivers of water quality in streams and rivers over broad scales of space and time. As LC/LU and climate continue to change we can expect changes in water quality. This project seeks to understand the drivers of spatial and temporal variability in water quality across scales using new and existing data to...

Date published: April 17, 2019
Status: Active

Mountains to sea – fluvial transport of carbon and nutrients and effects on ecosystems and people

Stream transport (lateral transfer) of carbon remains a poorly understood flux within the global carbon budget.  This research addresses the need to refine our knowledge of both provenance and transformations of Dissolved Organic Matter (DOM) as it moves from mountains to sea.  Interpreting shifts in carbon quality with increasing stream order, and how these patterns change with variation in...

Date published: April 13, 2019
Status: Active

Linking water, carbon, and nitrogen cycles in seasonally snow-covered catchments under changing land resource conditions

Changes in snowpack accumulation, distribution, and melt in high-elevation catchments are likely to have important impacts on water, carbon, and nitrogen cycles, which are tightly coupled through exchanges of energy and biogeochemical compounds between atmospheric, terrestrial, and aquatic environments.  Our research helps to better understand how changes in climate will affect water...

Date published: April 13, 2019
Status: Active

Biogeochemistry of glaciers

Significant change to the Arctic and sub-arctic water cycle is underway, impacting hydrologic and biogeochemical fluxes.  In southcentral Alaska, glacier mass loss, changes to precipitation (including the rain/snow fraction), thawing ground ice, and vegetation encroachment will change both magnitude and timing of water and solute fluxes downstream.  Although altered fluxes of limiting...

Date published: December 13, 2018
Status: Active

Connections between Forested and Urban Landscapes and Implications for Water Supply

Interactions between forested and urban landscapes can lead to reciprocal effects that have substantial impacts on water supply and ecology. Air pollution from urban and forested landscapes can be deposited on adjacent forests, while forest disturbance, such as wildfires and floods, can remobilize those contaminants. Additionally, pollutants from legacy land use (e.g., mining) can also be...

Date published: December 4, 2018
Status: Active

Biogeochemistry of the Critical Zone: Origin and Fate of Organic Matter

Changing temperature, precipitation, and land use intensification has resulted in global soil degradation. The accompanying loss of soil organic matter (SOM) decreases important soil health services. Soil organic matter is a major global pool of carbon; if SOM can be increased, soils can mitigate elevated atmospheric CO2. However, there are major knowledge gaps in SOM persistence....

Date published: November 28, 2018
Status: Active

Climate Change, Hydrologic Responses and Impacts on Carbon Cycling as Inferred by Changes in Fluvial Dissolved Organic Carbon Fluxes

This project investigates the links between terrestrial and marine carbon cycling and fluvial transport of freshwater and dissolved organic carbon (DOC) to the near-coastal ocean. The project analyzes DOC export that integrates complex interacting processes in natural and human-impacted terrestrial and aquatic environments. Changes in DOC export may indicate changes in terrestrial ecosystem...

Date published: November 12, 2018
Status: Active

Geological Investigations of the Neogene

More than a third of the United States population lives in counties directly on the shoreline, making them vulnerable to hazards associated with changing sea level and storm surges associated with hurricanes and severe storms. The geologic record contains many examples of past intervals of warm climate and high sea level. "Geological Investigation of the Neogene" is examining proxy records of...