Mineral Resources Program

Publications

Results from our Program’s research and minerals information activities are published in USGS publications series as well as in outside journals.  To follow Minerals Information Periodicals, subscribe to the Mineral Periodicals RSS feed.

Subscribe to Minerals Periodicals RSS Feed

Minerals Information Publications

Minerals Information Publications

National Mineral Information Center (NMIC) products focus on the worldwide supply of, demand for, and flow of minerals and materials. These products are organized by mineral commodity, geographic area, or monthly/annual statistical compilation.

NMIC Publications
Filter Total Items: 2,271
Publication Thumbnail
Year Published: 2017

Environmental considerations related to mining of nonfuel minerals

Throughout most of human history, environmental stewardship during mining has not been a priority partly because of the lack of applicable laws and regulations and partly because of ignorance about the effects that mining can have on the environment. In the United States, the National Environmental Policy Act of 1969, in conjunction with related...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Seal, Robert R. ; Piatak, Nadine M.; Kimball, Bryn E.; Hammarstrom, Jane M.
Seal, R.R., II, Piatak, N.M., Kimball, B.E., and Hammarstrom, J.M., 2017, Environmental considerations related to mining of nonfuel minerals, chap. B of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. B1–B16, https://doi.org/10.3133/pp1802B.

Publication Thumbnail
Year Published: 2017

Fluorine

Fluorine compounds are essential in numerous chemical and manufacturing processes. Fluorspar is the commercial name for fluorite (isometric CaF2), which is the only fluorine mineral that is mined on a large scale. Fluorspar is used directly as a fluxing material and as an additive in different manufacturing processes. It is the source of fluorine...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Hayes, Timothy S.; Miller, M. Michael; Orris, Greta J.; Piatak, Nadine M.
Hayes, T.S., Miller, M.M., Orris, G.J., and Piatak, N.M., 2017, Fluorine, chap. G of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. G1–G80, http://doi.org/10.3133/pp1802G.

Publication Thumbnail
Year Published: 2017

Gallium

Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. Gallium is used in a wide variety of products that have microelectronic components containing either gallium arsenide (GaAs) or gallium nitride (GaN). GaAs is able to change electricity directly into laser light and is used in the manufacture of...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Foley, Nora K.; Jaskula, Brian W.; Kimball, Bryn E.; Schulte, Ruth F.
Foley, N.K., Jaskula, B.W., Kimball, B.E., and Schulte, R.F., 2017, Gallium, chap. H of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. H1–H35, https://doi.org/10.3133/pp1802H.

Publication Thumbnail
Year Published: 2017

Germanium and indium

Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.
Shanks, W.C.P., III, Kimball, B.E., Tolcin, A.C., and Guberman, D.E., 2017, Germanium and indium, chap. I of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. I1–I27, https://doi.org/10.3133/pp1802I.

Publication Thumbnail
Year Published: 2017

Graphite

Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.
Robinson, G.R., Jr., Hammarstrom, J.M., and Olson, D.W., 2017, Graphite, chap. J of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. J1–J24, https://doi.org/10.3133/pp1802J.

Publication Thumbnail
Year Published: 2017

Manganese

Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.
Cannon, W.F., Kimball, B.E., and Corathers, L.A., 2017, Manganese, chap. L of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. L1–L28, https://doi.org/10.3133/pp1802L.

Publication Thumbnail
Year Published: 2017

Niobium and tantalum

Niobium and tantalum are transition metals that are almost always found together in nature because they have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today. The leading use of niobium (about 75 percent) is in the production of high-...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Schulz, Klaus J.; Piatak, Nadine M.; Papp, John F.
Schulz, K.J., Piatak, N.M., and Papp, J.F., 2017, Niobium and tantalum, chap. M of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. M1–M34, https://doi.org/10.3133/pp1802M.

Publication Thumbnail
Year Published: 2017

Platinum-group elements

The platinum-group elements (PGEs)—platinum, palladium, rhodium, ruthenium, iridium, and osmium—are metals that have similar physical and chemical properties and tend to occur together in nature. PGEs are indispensable to many industrial applications but are mined in only a few places. The availability and accessibility of PGEs could be disrupted...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Zientek, Michael L.; Loferski, Patricia J.; Parks, Heather L.; Schulte, Ruth F.; Seal, Robert R.
Zientek, M.L., Loferski, P.J., Parks, H.L., Schulte, R.F., and Seal, R.R., II, 2017, Platinum-group elements, chap. N of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. N1–N91, https://doi.org/10.3133/pp1802N.

Publication Thumbnail
Year Published: 2017

Rare-earth elements

The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph
Van Gosen, B.S., Verplanck, P.L., Seal, R.R., II, Long, K.R., and Gambogi, Joseph, 2017, Rare-earth elements, chap. O of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. O1–O31, https://doi.org/10.3133/pp1802O.

Publication Thumbnail
Year Published: 2017

Rhenium

Rhenium is one of the rarest elements in Earth’s continental crust; its estimated average crustal abundance is less than 1 part per billion. Rhenium is a metal that has an extremely high melting point and a heat-stable crystalline structure. More than 80 percent of the rhenium consumed in the world is used in high-temperature superalloys,...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; John, David A.; Seal, Robert R. ; Polyak, Désirée E.
John, D.A., Seal, R.R., II, and Polyak, D.E., 2017, Rhenium, chap. P of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. P1–P49, https:/doi.org/10.3133/pp1802P.

Publication Thumbnail
Year Published: 2017

Selenium

Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Stillings, Lisa L.
Stillings, L.L., 2017, Selenium, chap. Q of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. Q1–Q55, https://doi.org/10.3133/pp1802Q.

Publication Thumbnail
Year Published: 2017

Tellurium

Tellurium (Te) is a very rare element that averages only 3 parts per billion in Earth’s upper crust. It shows a close association with gold and may be present in orebodies of most gold deposit types at levels of tens to hundreds of parts per million. In large-tonnage mineral deposits, such as porphyry copper and seafloor volcanogenic massive...

Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.; Goldfarb, Richard J.; Berger, Byron R.; George, Micheal W.; Seal, Robert R.
Goldfarb, R.J., Berger, B.R., George, M.W., and Seal, R.R., II, 2017, Tellurium, chap. R of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, p. R1–R27, https://doi.org/10.3133/pp1802R.