Skip to main content
U.S. flag

An official website of the United States government

Sediments

Filter Total Items: 50

USGS CoastCams

The U.S. Geological Survey (USGS) uses a nationwide network of coastal observing cameras, or CoastCams, to monitor coastal conditions in near real-time and support research by the USGS and its partners into a variety of coastal processes and hazards. The most recent CoastCam images are made publicly available within minutes of data collection and can be accessed using the links below or by...
link

USGS CoastCams

The U.S. Geological Survey (USGS) uses a nationwide network of coastal observing cameras, or CoastCams, to monitor coastal conditions in near real-time and support research by the USGS and its partners into a variety of coastal processes and hazards. The most recent CoastCam images are made publicly available within minutes of data collection and can be accessed using the links below or by...
Learn More

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
link

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
Learn More

Cascadia Subduction Zone Marine Geohazards

Societal Issue: Uncertainty related to rupture extent, slip distribution, and recurrence of past subduction megathrust earthquakes in the Pacific Northwest (northern CA, OR, WA, and southern BC) leads to ambiguity in earthquake and tsunami hazard assessments and hinders our ability to prepare for future events.
link

Cascadia Subduction Zone Marine Geohazards

Societal Issue: Uncertainty related to rupture extent, slip distribution, and recurrence of past subduction megathrust earthquakes in the Pacific Northwest (northern CA, OR, WA, and southern BC) leads to ambiguity in earthquake and tsunami hazard assessments and hinders our ability to prepare for future events.
Learn More

Sediment Transport in Coastal Environments

Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
link

Sediment Transport in Coastal Environments

Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
Learn More

Coral Reef Project

Explore the fascinating undersea world of coral reefs. Learn how we map, monitor, and model coral reefs so we can better understand, protect, and preserve our Nation's reefs.
link

Coral Reef Project

Explore the fascinating undersea world of coral reefs. Learn how we map, monitor, and model coral reefs so we can better understand, protect, and preserve our Nation's reefs.
Learn More

Reef Hydrodynamics and Sediment Processes

As part of the USGS Coral Reef Project, the overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs and their adjacent coastlines.
link

Reef Hydrodynamics and Sediment Processes

As part of the USGS Coral Reef Project, the overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs and their adjacent coastlines.
Learn More

Using Video Imagery to Study Coastal Change: Santa Cruz Beaches

Two video cameras atop the Dream Inn hotel in Santa Cruz, California, overlook the coast in northern Monterey Bay. One camera looks eastward over Santa Cruz Main Beach and boardwalk, while the other looks southward over Cowells Beach.
link

Using Video Imagery to Study Coastal Change: Santa Cruz Beaches

Two video cameras atop the Dream Inn hotel in Santa Cruz, California, overlook the coast in northern Monterey Bay. One camera looks eastward over Santa Cruz Main Beach and boardwalk, while the other looks southward over Cowells Beach.
Learn More

Transport of invasive microorganisms

The objectives of his project are to investigate the vectors and timing of microbiological invasions and the subsequent dispersal of these non-native organisms due to sediment transport. We will attempt to confirm the identification of specific invasives encountered with molecular sequencing, monitor the spread of the invading populations through their recent distribution and the historic...
link

Transport of invasive microorganisms

The objectives of his project are to investigate the vectors and timing of microbiological invasions and the subsequent dispersal of these non-native organisms due to sediment transport. We will attempt to confirm the identification of specific invasives encountered with molecular sequencing, monitor the spread of the invading populations through their recent distribution and the historic...
Learn More

Global Geoengineering Research

The Pacific Coastal and Marine Science Center geotechnical group investigates the causes of ground deformation and ground failure as a result of earthquakes, storms, and wave action
link

Global Geoengineering Research

The Pacific Coastal and Marine Science Center geotechnical group investigates the causes of ground deformation and ground failure as a result of earthquakes, storms, and wave action
Learn More

Sediment transport in submarine canyons

Objectives: Produce a step-change in understanding of submarine turbidity currents by measuring their two key features (synchronous velocity and concentration profiles) in detail (every 2-to-30 seconds) for the first time, and documenting spatial changes in their flow velocity from source-to-sink for the first time.
link

Sediment transport in submarine canyons

Objectives: Produce a step-change in understanding of submarine turbidity currents by measuring their two key features (synchronous velocity and concentration profiles) in detail (every 2-to-30 seconds) for the first time, and documenting spatial changes in their flow velocity from source-to-sink for the first time.
Learn More

Sediment transport between estuarine habitats in San Francisco Bay

We investigate mechanisms of sediment transport, resuspension dynamics in shoals, wave evolution in the shallows, wave attenuation in marshes, and transport of sediment between mudflats and marshes. We produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
link

Sediment transport between estuarine habitats in San Francisco Bay

We investigate mechanisms of sediment transport, resuspension dynamics in shoals, wave evolution in the shallows, wave attenuation in marshes, and transport of sediment between mudflats and marshes. We produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
Learn More
link

Drag and sediment transport: conditions at the bottom boundary

Research on bed sediment grain size, bedform morphology, vegetation characteristics, and sediment resuspension and transport.
Learn More
Was this page helpful?