Skip to main content
U.S. flag

An official website of the United States government

Statewide assessment of karst aquifers in New York with an inventory of closed-depression and focused-recharge features

June 12, 2020

Karst is a landscape formed from the dissolution of soluble rock or rock containing minerals that are easily dissolved from within the rock. The landscape is characterized by sinkholes, caves, losing streams, springs, and underground drainage systems, which rapidly move water through the karst. The two forms of karst in New York State include carbonate karst, which forms in carbonate rock (limestone, marble, and dolostone), and evaporite karst, which forms in rock that contains the evaporite minerals gypsum and halite.

Past and recent studies of karst across the State have shown that areas of focused recharge in karstic carbonate rock allow contaminants to enter aquifer systems with little attenuation. Focused areas of recharge need to be identified to help prevent such contamination from sources on or adjacent to the karst. The New York State Departments of Environmental Conservation and Health are collaborating with the agricultural community to make farmers and farm-planning advisors more aware of karst and how to manage daily farming activities to reduce their impact on surface water and groundwater resources, especially in karst areas. There is also a need to make regulators, planners, and the general public aware of New York’s karst resources and to properly protect and manage these resources to protect the quality of groundwater and surface water that can flow into, through, and from karst bedrock.

Using publicly available geospatial data, karst bedrock and closed depressions over or near karst rock were identified across New York. Carbonate, evaporite, and marble geologic units were selected from a statewide 1:250,000-scale bedrock geology dataset. The selected geologic units were intersected with 7.5-minute quadrangle maps to define the study area.

The U.S. Geological Survey has compiled an inventory of closed depressions from statewide digital contour data, scanned 7.5-minute topographic maps known as a digital raster graphics, and light detection and ranging (lidar) digital elevation models. Analysis of the data resulted in the identification of 5,023 closed depressions statewide. The inventory was conducted to eliminate duplication of results from analysis of the three data sources. A series of overlay analyses was conducted using the closed depressions and thematic data known to be key factors in determining the probability of a closed depression contributing to focused groundwater recharge; the thematic data include bedrock geology, soil type, soil infiltration rate, and land cover.

Though the extent of karst development is important in understanding the interaction between surface water and groundwater in karst terrains, some of the worst cases of groundwater contamination in karst can occur where only minor karst features might be present. The presence of karst—be it a short section of a solutioned fracture or an extensive cave system—requires careful consideration, forward-looking environmental planning, and consistent water-quality protection to preserve New York State’s water resources.

Publication Year 2020
Title Statewide assessment of karst aquifers in New York with an inventory of closed-depression and focused-recharge features
DOI 10.3133/sir20205030
Authors William M. Kappel, James E. Reddy, Jonathan Casey Root
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2020-5030
Index ID sir20205030
Record Source USGS Publications Warehouse
USGS Organization New York Water Science Center