Land Change Science Program

Landscape Change and Impacts

Land Use and Land Cover Change (LULCC) results from both human activities and natural climate and geomorphic processes. Using remotely sensed data, ground-based observations, historical accounts, and other reconstructions, the Land Change Science Program documents long-term patterns of LULCC, determines their consequences, and anticipates impacts of future management changes.

Filter Total Items: 43
Date published: October 23, 2019
Status: Active

Drivers and Impacts of North Pacific Climate Variability

Climate model forecasts indicate an increase in extreme hydrologic events, including floods and droughts, for California and the western U.S. in the future. To better understand what the consequences of this future change in climate may be, USGS scientists are studying the frequency, magnitude, and impacts of past hydroclimate variability and extremes in the region. This project produces well-...

Date published: July 1, 2019
Status: Active

Future Scenarios of Land Use and Land Cover Change for Integrated Resources Assessment

This research project aims to develop a portfolio approach to development of land change scenarios for the United States based on empirical data and global integrated assessment modeling.This research will continue the development and capabilities of the Land Use and Carbon...

Date published: June 17, 2019
Status: Active

Integrated Biogeochemical Research and Assessment

This project integrates soil and ecosystem data to impute important soil properties for hydric soils and wetlands. The work hopes to answer the questions: How have historical changes in biogeochemical processes affected present-day and potential future interactions among land, water, and ecosystem resources? How can improved understanding of historical and present-day biogeochemical...

Date published: May 31, 2019
Status: Active

Remote Sensing of Ecosystem Condition and Resilience

Ecosystem condition tends to be highly dynamic in response to natural variability in climate, extreme climate events, disturbance events, and human land use activities. Satellite imagery provides a powerful tool to enhance our understanding of ecosystem change at a landscape scale. This research integrates diverse sources of satellite imagery with ancillary datasets to explore how ecosystems...

Date published: May 30, 2019
Status: Active

Wetlands in the Quaternary

Wetlands accumulate organic-rich sediment or peat stratigraphically, making them great archives of past environmental change. Wetlands also act as hydrologic buffers on the landscape and are important to global biogeochemical cycling. This project uses wetland archives from a range of environments to better understand how vegetation, hydrology, and hydroclimate has changed on decadal to multi-...

Date published: May 10, 2019
Status: Active

Accounting for natural capital: building the numbers to track and sustain the nation’s natural resources

Accounting for ecosystem services - the benefits that nature provides to society and the economy - is gaining increasing traction worldwide as governments and the private sector use them to monitor integrated environmental and economic trends. When they are well understood and managed, ecosystems can provide these long-term benefits to people - such as clean air and water, flood control, crop...

Contacts: Kenneth J Bagstad, Ph.D., Carl D Shapiro, Jane Carter Ingram
Date published: April 17, 2019
Status: Active

Water Quality Across Regional Stream Networks: The Influence of Land Cover and Land Use, Climate, and Biogeochemical Processing on Spatiotemporal Variance

Land cover and land use (LC/LU), climate, and biogeochemical processing are significant drivers of water quality in streams and rivers over broad scales of space and time. As LC/LU and climate continue to change we can expect changes in water quality. This project seeks to understand the drivers of spatial and temporal variability in water quality across scales using new and existing data to...

Date published: April 15, 2019
Status: Active

Effects of disturbance and drought on the forests and hydrology of the Southern Rocky Mountains

Climate-related forest disturbances, particularly drought-induced tree mortality and large, high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies).  Our research combines long-term place-based ecological data, diverse methods (e.g., paleo, remote-sensing), and networking approaches to...

Date published: April 13, 2019
Status: Active

Mechanisms, models, and management of invasive species and soil biogeochemical process in prairie pothole wetlands

The ecological foundation of thousands of acres of wetland habitat is being impacted by changes in land cover, land use, climate, and invasive species.  This project utilizes USGS remotely-sensed products, along with experimental and observational field data to develop spatially-explicit, landscape-scale models of invasive cattails and soil biogeochemical processes.  These models will assist...

Date published: April 13, 2019
Status: Active

Forest health and drought response

Forests provide society with economically important and often irreplaceable goods and services, such as wood products, carbon sequestration, clean water, biodiversity, and recreational opportunities.  Yet hotter droughts (droughts in which unusually high temperatures exacerbate the effects of low precipitation) are projected to increase in frequency and intensity in coming decades, potentially...

Date published: March 14, 2019
Status: Active

Monitoring Arctic and boreal ecosystems through the assimilation of field-based studies, remote sensing, and modelling

Northern high-latitude regions are experiencing climate warming at rates nearly double that of lower latitudes, leading to warming and thawing of permafrost-affected soils, decomposition of previously frozen organic matter and increases in the number of large fire years, which can substantially impact social and environmental systems.  Monitoring Arctic and boreal ecosystems of northern...

Date published: February 25, 2019
Status: Active

Drylands are highly vulnerable to climate and land use changes: what ecosystem changes are in store?

Improper land use during drought has been a major driver of land degradation in drylands globally, especially in the western U.S.  Increasing aridity in western U.S. drylands under future climates will exacerbate risks associated with drought and land use decisions. This project provides critical observational, experimental, and modelling evidence to support our DOI partners with decision...