Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.
Quick Links
Looking for data? Maps? Use these links to quickly access some of the most frequently visited USGS web pages on water quality.
In 1991, Congress established the National Water-Quality Assessment (NAWQA) Project to address where, when, why, and how the Nation's water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has produced scientific data and knowledge that is used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. A prominent feature of NAWQA is the development of long-term consistent and comparable information on streams, rivers, ground water, and aquatic systems. The NAWQA Project is designed to answer these questions:
- What is the current condition of our Nation's streams, rivers, and groundwater?
- How are these conditions changing over time?
- How do natural features and human activities affect these conditions, and where are those effects most pronounced?
NAWQA Water-Quality Research
SURFACE WATER AND ECOLOGY
Water Quality and Ecology of Small Streams (RSQA)
The Regional Stream Quality Assessment (RSQA) is studying the relations between stressors (chemical and physical) and stream ecology (fish, algae, and aquatic invertebrates) at small streams in five large regions of the United States. Users can access an online mapping tool to compare water quality at small streams across a region, see scorecards that summarize stream health at each stream site, and download data for hundreds of chemical compounds.
Water Quality in the Nation's Streams and Rivers: Current Conditions and Long-Term Trends
Knowing the current water-quality conditions of our rivers and streams and where those conditions have improved or deteriorated is critical information for resource managers and the public. An online water-quality tracking tool shows graphs of pesticides, nutrients, and sediment in streams, and users can download data for a streams and rivers across the country; the tool is updated annually. The online water-quality trends mapping tool allows users to visualize trends in water chemistry (nutrients, pesticides, sediment, carbon, and salinity) and aquatic ecology (fish, invertebrates, and algae).
SPARROW modeling: Estimating nutrient, sediment, and dissolved solids transport
SPARROW (SPAtially Referenced Regression On Watershed attributes) models estimate the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources. Users can explore relations between human activities, natural processes, and contaminant transport using interactive mappers.
GROUNDWATER
Groundwater Quality: Current Conditions and Changes Through Time
Scientists are characterizing groundwater quality in principal aquifers, the primary source of the Nation's groundwater used for drinking. Concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, are compared to benchmarks established for the protection of human health. Users can access an online tool to see how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation, and see in real time how chemical properties of groundwater at some sites are fluctuating.
Groundwater Quality: Predictions for Unmonitored Areas
Groundwater hydrologists are developing statistical models that predict where a contaminant is likely to occur in groundwater and at what concentration. These models extrapolate groundwater quality in areas and at depths where groundwater has not yet been sampled. Users can see predicted contaminant concentrations in map view, and—for some aquifers—in 3-D.
SURFACE WATER/GROUNDWATER INTERACTION
Groundwater/Surface-Water Interaction
Surface water and groundwater are intimately connected and are constantly interacting. The Integrated Watershed Studies team is quantifying how water and chemicals move between the landscape, streams and rivers, and groundwater. Learn how the quantity and quality of surface water and groundwater are likely to change in response to changes in climate, land use, and best management practices.
NAWQA — The First Two Decades
From 1991-2001, the NAWQA Project conducted interdisciplinary assessments, including water chemistry, hydrology, land use, stream habitat, and aquatic life, and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units.
From 2001-2012, NAWQA focused on specific water-quality topics of national interest, such as pesticides, nutrients, and aquatic ecology, as well as continuing to monitor and assess 42 of the Study Units.
► Learn about the first two decades of NAWQA research and access information and publications about the quality of the Nation's surface-water and groundwater resources.
How do we do it?
Find methods used by NAWQA to assesses the current quality of our surface water and groundwater.
► Documentation on water-quality sample collection methods developed by NAWQA.
Explore Related Topics on Water-Quality Research
RELATIONS BETWEEN LAND USE AND WATER QUALITY
Urban Land Use and Water Quality
Agricultural Contamination
CONTAMINANTS IN WATER
Arsenic and Drinking Water
Chloride, salinity, and dissolved solids
Emerging contaminants (including pharmaceuticals and hormones)
Mercury
Metals and Other Trace Elements
Nutrients and Eutrophication
National Atmospheric Deposition Program (NADP)
Pesticides and Water Quality
Coal-Tar-Based Pavement Sealcoat, PAHs, and Environmental Health
Radionuclides
Sediment-associated contaminants
Volatile organic compounds (VOCs) (including MTBE)
DRINKING WATER ISSUES
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for Contaminants
Drinking Water and Source Water Research
RELATIONS TO AQUATIC LIFE
Stream ecology
Mercury
Streamflow Alteration
NWQP Research on Harmful Algal Blooms (HABs)
TRENDS IN WATER QUALITY
Water-quality trends
Water-quality trends from lake sediment cores
PROCESSES
Oxidation/Reduction (Redox)
Groundwater Age
► Confused by some of the water-quality terms? Find the definitions and explanations you're looking for in the Water-Quality Glossary.
Learn more about some of the research associated with the National Water Quality Assessment project.
Web applications and downloadable data related to NAWQA water-quality research.
Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
The NAWQA project publishes reports that describe water-quality and ecological conditions; whether conditions are changing over time; and how natural features and human activities affect these conditions.
The most recent publications and selected national-scale reports are listed here.
Flow modification in the Nation’s streams and rivers
Prediction of pesticide toxicity in Midwest streams
Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams
Predicting arsenic in drinking water wells of the Central Valley, California
Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013
A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells
Coal-tar-based pavement sealcoat—Potential concerns for human health and aquatic life
Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds
Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides
Spatial and temporal variation in microcystins occurrence in wadeable streams in the southeastern USA
An evaluation of methods for estimating decadal stream loads
Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data
The quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010
Interactive mappers and web applications related to NAWQA water-quality research.
Isotopic tracers in fish in Northeast provide clue to mercury sources
Isotopes of mercury in fish can indicate the source of that mercury, reports a new study from the USGS Regional Stream Quality Assessment.
- Overview
Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.
Quick LinksLooking for data? Maps? Use these links to quickly access some of the most frequently visited USGS web pages on water quality.
In 1991, Congress established the National Water-Quality Assessment (NAWQA) Project to address where, when, why, and how the Nation's water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has produced scientific data and knowledge that is used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. A prominent feature of NAWQA is the development of long-term consistent and comparable information on streams, rivers, ground water, and aquatic systems. The NAWQA Project is designed to answer these questions:
- What is the current condition of our Nation's streams, rivers, and groundwater?
- How are these conditions changing over time?
- How do natural features and human activities affect these conditions, and where are those effects most pronounced?
NAWQA Water-Quality Research
SURFACE WATER AND ECOLOGY
Water Quality and Ecology of Small Streams (RSQA)
The Regional Stream Quality Assessment (RSQA) is studying the relations between stressors (chemical and physical) and stream ecology (fish, algae, and aquatic invertebrates) at small streams in five large regions of the United States. Users can access an online mapping tool to compare water quality at small streams across a region, see scorecards that summarize stream health at each stream site, and download data for hundreds of chemical compounds.Water Quality in the Nation's Streams and Rivers: Current Conditions and Long-Term Trends
Knowing the current water-quality conditions of our rivers and streams and where those conditions have improved or deteriorated is critical information for resource managers and the public. An online water-quality tracking tool shows graphs of pesticides, nutrients, and sediment in streams, and users can download data for a streams and rivers across the country; the tool is updated annually. The online water-quality trends mapping tool allows users to visualize trends in water chemistry (nutrients, pesticides, sediment, carbon, and salinity) and aquatic ecology (fish, invertebrates, and algae).SPARROW modeling: Estimating nutrient, sediment, and dissolved solids transport
SPARROW (SPAtially Referenced Regression On Watershed attributes) models estimate the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources. Users can explore relations between human activities, natural processes, and contaminant transport using interactive mappers.From left: Aquatic sampling during Southeast Stream Quality Assessment; velocity measurement at Truckee River, Nevada; wrestling with cages of fathead minnows in Goodwater Creek, Missouri, during high flow. GROUNDWATER
Groundwater Quality: Current Conditions and Changes Through Time
Scientists are characterizing groundwater quality in principal aquifers, the primary source of the Nation's groundwater used for drinking. Concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, are compared to benchmarks established for the protection of human health. Users can access an online tool to see how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation, and see in real time how chemical properties of groundwater at some sites are fluctuating.Groundwater Quality: Predictions for Unmonitored Areas
Groundwater hydrologists are developing statistical models that predict where a contaminant is likely to occur in groundwater and at what concentration. These models extrapolate groundwater quality in areas and at depths where groundwater has not yet been sampled. Users can see predicted contaminant concentrations in map view, and—for some aquifers—in 3-D.From left: measuring groundwater salinity in Georgia; collecting groundwater samples for laboratory analysis in Florida; sampling shallow groundwater wells for an agricultural land-use study in Georgia; collecting groundwater samples in Nevada. SURFACE WATER/GROUNDWATER INTERACTION
Groundwater/Surface-Water Interaction
Surface water and groundwater are intimately connected and are constantly interacting. The Integrated Watershed Studies team is quantifying how water and chemicals move between the landscape, streams and rivers, and groundwater. Learn how the quantity and quality of surface water and groundwater are likely to change in response to changes in climate, land use, and best management practices.From left: Installing shallow groundwater wells at ephemeral ponds; the Alapaha River , a "losing" stream at low flow; marking groundwater seeps. (Credit: Alan Cressler, USGS) NAWQA — The First Two Decades
From 1991-2001, the NAWQA Project conducted interdisciplinary assessments, including water chemistry, hydrology, land use, stream habitat, and aquatic life, and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units.
From 2001-2012, NAWQA focused on specific water-quality topics of national interest, such as pesticides, nutrients, and aquatic ecology, as well as continuing to monitor and assess 42 of the Study Units.
► Learn about the first two decades of NAWQA research and access information and publications about the quality of the Nation's surface-water and groundwater resources.
How do we do it?
Find methods used by NAWQA to assesses the current quality of our surface water and groundwater.
► Documentation on water-quality sample collection methods developed by NAWQA.
Explore Related Topics on Water-Quality Research
RELATIONS BETWEEN LAND USE AND WATER QUALITY
Urban Land Use and Water Quality
Agricultural ContaminationCONTAMINANTS IN WATER
Arsenic and Drinking Water
Chloride, salinity, and dissolved solids
Emerging contaminants (including pharmaceuticals and hormones)
Mercury
Metals and Other Trace Elements
Nutrients and Eutrophication
National Atmospheric Deposition Program (NADP)
Pesticides and Water Quality
Coal-Tar-Based Pavement Sealcoat, PAHs, and Environmental Health
Radionuclides
Sediment-associated contaminants
Volatile organic compounds (VOCs) (including MTBE)DRINKING WATER ISSUES
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for Contaminants
Drinking Water and Source Water ResearchRELATIONS TO AQUATIC LIFE
Stream ecology
Mercury
Streamflow Alteration
NWQP Research on Harmful Algal Blooms (HABs)TRENDS IN WATER QUALITY
Water-quality trends
Water-quality trends from lake sediment coresPROCESSES
Oxidation/Reduction (Redox)
Groundwater Age► Confused by some of the water-quality terms? Find the definitions and explanations you're looking for in the Water-Quality Glossary.
- Science
Learn more about some of the research associated with the National Water Quality Assessment project.
Filter Total Items: 33 - Data
Web applications and downloadable data related to NAWQA water-quality research.
Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
This product consists of time-series calculations of anthropogenic characteristics derived for 16 data themes for multiple scales covering the conterminous United States. The characteristics are those which (a) have consistent data sources, and (b) have the potential to affect the water quality of streams and rivers. All 16 data themes are provided for Hydrologic Unit Code level-10 (HUC-10) boundaFilter Total Items: 50No Result Found - Multimedia
- Publications
The NAWQA project publishes reports that describe water-quality and ecological conditions; whether conditions are changing over time; and how natural features and human activities affect these conditions.
The most recent publications and selected national-scale reports are listed here.
Flow modification in the Nation’s streams and rivers
This report summarizes a national assessment of flowing waters conducted by the U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) Project and addresses several pressing questions about the modification of natural flows in streams and rivers. The assessment is based on the integration, modeling, and synthesis of monitoring data collected by the USGS and the U.S. EnvironmentaAuthorsDaren Carlisle, David M. Wolock, Christopher P. Konrad, Gregory J. McCabe, Ken Eng, Theodore E. Grantham, Barbara MahlerFilter Total Items: 107Prediction of pesticide toxicity in Midwest streams
The occurrence of pesticide mixtures is common in stream waters of the United States, and the impact of multiple compounds on aquatic organisms is not well understood. Watershed Regressions for Pesticides (WARP) models were developed to predict Pesticide Toxicity Index (PTI) values in unmonitored streams in the Midwest and are referred to as WARP-PTI models. The PTI is a tool for assessing the relAuthorsMegan E. Shoda, Wesley W. Stone, Lisa H. NowellBifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams
Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm resultsAuthorsHolly Rogers, Travis S. Schmidt, Brittanie L. Dabney, Michelle Hladik, Barbara Mahler, Peter C. Van MetrePredicting arsenic in drinking water wells of the Central Valley, California
Probabilities of arsenic in groundwater at depths used for domestic and public supply in the Central Valley of California are predicted using weak-learner ensemble models (boosted regression trees, BRT) and more traditional linear models (logistic regression, LR). Both methods captured major processes that affect arsenic concentrations, such as the chemical evolution of groundwater, redox differenAuthorsJoseph D. Ayotte, Bernard T. Nolan, JoAnn M. GronbergGroundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013
Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, whiAuthorsTerri Arnold, Leslie A. DeSimone, Laura M. Bexfield, Bruce D. Lindsey, Jeannie R. B. Barlow, Justin T. Kulongoski, MaryLynn Musgrove, James A. Kingsbury, Kenneth BelitzA partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells
A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen andAuthorsBryant C. Jurgens, John Karl Böhlke, Leon J. Kauffman, Kenneth Belitz, Bradley K. EsserCoal-tar-based pavement sealcoat—Potential concerns for human health and aquatic life
Introduction Sealcoat is the black, viscous liquid sprayed or painted on many asphalt parking lots, driveways, and playgrounds to protect and enhance the appearance of the underlying asphalt. Studies by the U.S. Geological Survey (USGS), academic institutions, and State and local agencies have identified coal-tar-based pavement sealcoat as a major source of polycyclic aromatic hydrocarbon (PAH) coAuthorsBarbara Mahler, Michael D. Woodside, Peter C. Van MetreEffect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds
Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutriAuthorsStephen J. Kalkhoff, Laura E. Hubbard, Mark D. Tomer, D.E. JamesDevelopment and application of freshwater sediment-toxicity benchmarks for currently used pesticides
Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in wholeAuthorsLisa H. Nowell, Julia E. Norman, Christopher G. Ingersoll, Patrick W. MoranSpatial and temporal variation in microcystins occurrence in wadeable streams in the southeastern USA
Despite historical observations of potential microcystin-producing cyanobacteria (including Leptolyngbya,Phormidium, Pseudoanabaena, and Anabaena species) in 74% of headwater streams in Alabama, Georgia, South Carolina, and North Carolina (USA) from 1993 to 2011, fluvial cyanotoxin occurrence has not been systematically assessed in the southeastern United States. To begin to address this data gap,AuthorsKeith A. Loftin, Jimmy M. Clark, Celeste A. Journey, Dana W. Kolpin, Peter C. Van Metre, Paul M. BradleyAn evaluation of methods for estimating decadal stream loads
Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of sAuthorsCasey J. Lee, Robert M. Hirsch, Gregory E. Schwarz, David J. Holtschlag, Stephen D. Preston, Charles G. Crawford, Aldo V. VecchiaQuantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data
We describe a new approach that couples hydrograph separation with high-frequency nitrate data to quantify time-variable groundwater and runoff loading of nitrate to streams, and the net in-stream fate of nitrate at the watershed-scale. The approach was applied at three sites spanning gradients in watershed size and land use in the Chesapeake Bay watershed. Results indicate that 58-73% of the annuAuthorsMatthew P. Miller, Anthony J. Tesoriero, Paul D. Capel, Brian A. Pellerin, Kenneth E. Hyer, Douglas A. BurnsByWater Resources Mission Area, National Water Quality Program, California Water Science Center, Chesapeake Bay Activities, New York Water Science Center, Oregon Water Science Center, Utah Water Science Center, Virginia and West Virginia Water Science Center, Upper Midwest Environmental Sciences Center, Upper Midwest Water Science CenterThe quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010
About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminAuthorsLeslie A. DeSimone, Peter B. McMahon, Michael R. Rosen - Web Tools
Interactive mappers and web applications related to NAWQA water-quality research.
- Software
- News
Isotopic tracers in fish in Northeast provide clue to mercury sources
Isotopes of mercury in fish can indicate the source of that mercury, reports a new study from the USGS Regional Stream Quality Assessment.
Filter Total Items: 45