Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.
Quick Links
Looking for data? Maps? Use these links to quickly access some of the most frequently visited USGS web pages on water quality.
In 1991, Congress established the National Water-Quality Assessment (NAWQA) Project to address where, when, why, and how the Nation's water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has produced scientific data and knowledge that is used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. A prominent feature of NAWQA is the development of long-term consistent and comparable information on streams, rivers, ground water, and aquatic systems. The NAWQA Project is designed to answer these questions:
- What is the current condition of our Nation's streams, rivers, and groundwater?
- How are these conditions changing over time?
- How do natural features and human activities affect these conditions, and where are those effects most pronounced?
NAWQA Water-Quality Research
SURFACE WATER AND ECOLOGY
Water Quality and Ecology of Small Streams (RSQA)
The Regional Stream Quality Assessment (RSQA) is studying the relations between stressors (chemical and physical) and stream ecology (fish, algae, and aquatic invertebrates) at small streams in five large regions of the United States. Users can access an online mapping tool to compare water quality at small streams across a region, see scorecards that summarize stream health at each stream site, and download data for hundreds of chemical compounds.
Water Quality in the Nation's Streams and Rivers: Current Conditions and Long-Term Trends
Knowing the current water-quality conditions of our rivers and streams and where those conditions have improved or deteriorated is critical information for resource managers and the public. An online water-quality tracking tool shows graphs of pesticides, nutrients, and sediment in streams, and users can download data for a streams and rivers across the country; the tool is updated annually. The online water-quality trends mapping tool allows users to visualize trends in water chemistry (nutrients, pesticides, sediment, carbon, and salinity) and aquatic ecology (fish, invertebrates, and algae).
SPARROW modeling: Estimating nutrient, sediment, and dissolved solids transport
SPARROW (SPAtially Referenced Regression On Watershed attributes) models estimate the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources. Users can explore relations between human activities, natural processes, and contaminant transport using interactive mappers.
GROUNDWATER
Groundwater Quality: Current Conditions and Changes Through Time
Scientists are characterizing groundwater quality in principal aquifers, the primary source of the Nation's groundwater used for drinking. Concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, are compared to benchmarks established for the protection of human health. Users can access an online tool to see how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation, and see in real time how chemical properties of groundwater at some sites are fluctuating.
Groundwater Quality: Predictions for Unmonitored Areas
Groundwater hydrologists are developing statistical models that predict where a contaminant is likely to occur in groundwater and at what concentration. These models extrapolate groundwater quality in areas and at depths where groundwater has not yet been sampled. Users can see predicted contaminant concentrations in map view, and—for some aquifers—in 3-D.
SURFACE WATER/GROUNDWATER INTERACTION
Groundwater/Surface-Water Interaction
Surface water and groundwater are intimately connected and are constantly interacting. The Integrated Watershed Studies team is quantifying how water and chemicals move between the landscape, streams and rivers, and groundwater. Learn how the quantity and quality of surface water and groundwater are likely to change in response to changes in climate, land use, and best management practices.
NAWQA — The First Two Decades
From 1991-2001, the NAWQA Project conducted interdisciplinary assessments, including water chemistry, hydrology, land use, stream habitat, and aquatic life, and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units.
From 2001-2012, NAWQA focused on specific water-quality topics of national interest, such as pesticides, nutrients, and aquatic ecology, as well as continuing to monitor and assess 42 of the Study Units.
► Learn about the first two decades of NAWQA research and access information and publications about the quality of the Nation's surface-water and groundwater resources.
How do we do it?
Find methods used by NAWQA to assesses the current quality of our surface water and groundwater.
► Documentation on water-quality sample collection methods developed by NAWQA.
Explore Related Topics on Water-Quality Research
RELATIONS BETWEEN LAND USE AND WATER QUALITY
Urban Land Use and Water Quality
Agricultural Contamination
CONTAMINANTS IN WATER
Arsenic and Drinking Water
Chloride, salinity, and dissolved solids
Emerging contaminants (including pharmaceuticals and hormones)
Mercury
Metals and Other Trace Elements
Nutrients and Eutrophication
National Atmospheric Deposition Program (NADP)
Pesticides and Water Quality
Coal-Tar-Based Pavement Sealcoat, PAHs, and Environmental Health
Radionuclides
Sediment-associated contaminants
Volatile organic compounds (VOCs) (including MTBE)
DRINKING WATER ISSUES
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for Contaminants
Drinking Water and Source Water Research
RELATIONS TO AQUATIC LIFE
Stream ecology
Mercury
Streamflow Alteration
NWQP Research on Harmful Algal Blooms (HABs)
TRENDS IN WATER QUALITY
Water-quality trends
Water-quality trends from lake sediment cores
PROCESSES
Oxidation/Reduction (Redox)
Groundwater Age
► Confused by some of the water-quality terms? Find the definitions and explanations you're looking for in the Water-Quality Glossary.
Learn more about some of the research associated with the National Water Quality Assessment project.
New Water-Quality Directions
NWQP Research on Harmful Algal Blooms (HABs)
Nutrients and Eutrophication
Drinking Water and Source Water Research
Urban Land Use and Water Quality
NWQP Water-Quality Topics
Emerging Contaminants
Groundwater Quality Research
Groundwater/Surface-Water Interaction
Hydraulic Fracturing
Agriculture and the Quality of the Nation's Waters
Acid Rain
Web applications and downloadable data related to NAWQA water-quality research.
Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
Data Release for Secondary Hydrogeologic Regions of the Conterminous United States (ver. 2.0, June 2022)
Input and results from a boosted regression tree (BRT) model relating base flow nitrate concentrations in the Chesapeake Bay watershed to catchment characteristics (1970-2013)
Concentrations of Pesticide, Pharmaceutical, and Organic Wastewater Contaminants from a Multi-Regional Assessment of Wadeable USA Streams, 2014-17
Pesticide and transformation product concentrations and risk quotients in U.S. headwater streams
Data set for an ecological risk assessment of Firpronil compounds in US streams
Dissolved Pesticides in Weekly Water Samples from the NAWQA Regional Stream Quality Assessments (2013-2017)
Pesticide Toxicity Index (PTI) and maximum Toxic Unit (TUmax) scores and information for fish, cladocerans, and benthic invertebrates from water samples collected at National Water Quality Network sites during Water Years 2013-2017
Datasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January through December 2016, and Previously Unpublished Data from 2013 to 2015
Data for Fluoride Occurrence in United States Groundwater
Concentrations of pesticides associated with streambed sediment and biofilm in California streams, 2017
Hydrophobic (sediment-associated) pesticides were measured in sediment samples collected from 82 wadeable streams and in biofilm in 54 of those streams in the Central California Foothills and Coastal Mountains ecoregion.115 current-use and 3 legacy pesticides were measured in stream sediment; 93 of the current-use pesticides and the same 3 legacy pesticides were measured in biofilm. On average 4 t
Urban sediment and fallout radionuclide input characteristics of Dead Run watershed in Catonsville, Maryland for 2017-2018 (ver. 1.1, March 2020)
Pesticides in Daily and Weekly Water Samples from the NAWQA Midwest and Southeast Stream Quality Assessments (2013-2014)
The NAWQA project publishes reports that describe water-quality and ecological conditions; whether conditions are changing over time; and how natural features and human activities affect these conditions.
The most recent publications and selected national-scale reports are listed here.
Flow modification in the Nation’s streams and rivers
Is there an urban pesticide signature? Urban streams in five U.S. regions share common dissolved-phase pesticides but differ in predicted aquatic toxicity
Groundwater quality in the Colorado Plateaus aquifers, western United States
Groundwater quality in the Edwards-Trinity aquifer system
Groundwater quality in selected Stream Valley aquifers, western United States
Groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January 2017 through December 2019
Inclusion of pesticide transformation products is key to estimating pesticide exposures and effects in small U.S. streams
Nitrogen and phosphorus sources and delivery from the Mississippi/Atchafalaya River Basin: An update using 2012 SPARROW models
Multi-region assessment of chemical mixture exposures and predicted cumulative effects in USA wadeable urban/agriculture-gradient streams
Chemical-contaminant mixtures are widely reported in large stream reaches in urban/agriculture-developed watersheds, but mixture compositions and aggregate biological effects are less well understood in corresponding smaller headwaters, which comprise most of stream length, riparian connectivity, and spatial biodiversity. During 2014–2017, the U.S. Geological Survey (USGS) measured 389 unique orga
Changing climate drives future streamflow declines and challenges in meeting water demand across the southwestern United States
Three-dimensional distribution of residence time metrics in the glaciated United States using metamodels trained on general numerical models
Lithium in groundwater used for drinking-water supply in the United States
The occurrence and distribution of strontium in U.S. groundwater
Interactive mappers and web applications related to NAWQA water-quality research.
Groundwater Quality: Decadal Change
Almost one-half of the U.S. population rely on groundwater for their water supply, and demand for groundwater for public supply, irrigation, and agriculture continues to increase. This mapper shows how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation.
RSPARROW
RSPARROW, now available on the USGS GitLab repository, provides the first open-source version of the USGS SPARROW water-quality model
SPARROW Modeling Program
SPARROW is a popular watershed modeling technique, distributed by the USGS, that estimates the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources.
Isotopic tracers in fish in Northeast provide clue to mercury sources
Isotopes of mercury in fish can indicate the source of that mercury, reports a new study from the USGS Regional Stream Quality Assessment.
- Overview
Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.
Quick LinksLooking for data? Maps? Use these links to quickly access some of the most frequently visited USGS web pages on water quality.
In 1991, Congress established the National Water-Quality Assessment (NAWQA) Project to address where, when, why, and how the Nation's water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has produced scientific data and knowledge that is used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. A prominent feature of NAWQA is the development of long-term consistent and comparable information on streams, rivers, ground water, and aquatic systems. The NAWQA Project is designed to answer these questions:
- What is the current condition of our Nation's streams, rivers, and groundwater?
- How are these conditions changing over time?
- How do natural features and human activities affect these conditions, and where are those effects most pronounced?
NAWQA Water-Quality Research
SURFACE WATER AND ECOLOGY
Water Quality and Ecology of Small Streams (RSQA)
The Regional Stream Quality Assessment (RSQA) is studying the relations between stressors (chemical and physical) and stream ecology (fish, algae, and aquatic invertebrates) at small streams in five large regions of the United States. Users can access an online mapping tool to compare water quality at small streams across a region, see scorecards that summarize stream health at each stream site, and download data for hundreds of chemical compounds.Water Quality in the Nation's Streams and Rivers: Current Conditions and Long-Term Trends
Knowing the current water-quality conditions of our rivers and streams and where those conditions have improved or deteriorated is critical information for resource managers and the public. An online water-quality tracking tool shows graphs of pesticides, nutrients, and sediment in streams, and users can download data for a streams and rivers across the country; the tool is updated annually. The online water-quality trends mapping tool allows users to visualize trends in water chemistry (nutrients, pesticides, sediment, carbon, and salinity) and aquatic ecology (fish, invertebrates, and algae).SPARROW modeling: Estimating nutrient, sediment, and dissolved solids transport
SPARROW (SPAtially Referenced Regression On Watershed attributes) models estimate the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources. Users can explore relations between human activities, natural processes, and contaminant transport using interactive mappers.From left: Aquatic sampling during Southeast Stream Quality Assessment; velocity measurement at Truckee River, Nevada; wrestling with cages of fathead minnows in Goodwater Creek, Missouri, during high flow. GROUNDWATER
Groundwater Quality: Current Conditions and Changes Through Time
Scientists are characterizing groundwater quality in principal aquifers, the primary source of the Nation's groundwater used for drinking. Concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, are compared to benchmarks established for the protection of human health. Users can access an online tool to see how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation, and see in real time how chemical properties of groundwater at some sites are fluctuating.Groundwater Quality: Predictions for Unmonitored Areas
Groundwater hydrologists are developing statistical models that predict where a contaminant is likely to occur in groundwater and at what concentration. These models extrapolate groundwater quality in areas and at depths where groundwater has not yet been sampled. Users can see predicted contaminant concentrations in map view, and—for some aquifers—in 3-D.From left: measuring groundwater salinity in Georgia; collecting groundwater samples for laboratory analysis in Florida; sampling shallow groundwater wells for an agricultural land-use study in Georgia; collecting groundwater samples in Nevada. SURFACE WATER/GROUNDWATER INTERACTION
Groundwater/Surface-Water Interaction
Surface water and groundwater are intimately connected and are constantly interacting. The Integrated Watershed Studies team is quantifying how water and chemicals move between the landscape, streams and rivers, and groundwater. Learn how the quantity and quality of surface water and groundwater are likely to change in response to changes in climate, land use, and best management practices.From left: Installing shallow groundwater wells at ephemeral ponds; the Alapaha River , a "losing" stream at low flow; marking groundwater seeps. (Credit: Alan Cressler, USGS) NAWQA — The First Two Decades
From 1991-2001, the NAWQA Project conducted interdisciplinary assessments, including water chemistry, hydrology, land use, stream habitat, and aquatic life, and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units.
From 2001-2012, NAWQA focused on specific water-quality topics of national interest, such as pesticides, nutrients, and aquatic ecology, as well as continuing to monitor and assess 42 of the Study Units.
► Learn about the first two decades of NAWQA research and access information and publications about the quality of the Nation's surface-water and groundwater resources.
How do we do it?
Find methods used by NAWQA to assesses the current quality of our surface water and groundwater.
► Documentation on water-quality sample collection methods developed by NAWQA.
Explore Related Topics on Water-Quality Research
RELATIONS BETWEEN LAND USE AND WATER QUALITY
Urban Land Use and Water Quality
Agricultural ContaminationCONTAMINANTS IN WATER
Arsenic and Drinking Water
Chloride, salinity, and dissolved solids
Emerging contaminants (including pharmaceuticals and hormones)
Mercury
Metals and Other Trace Elements
Nutrients and Eutrophication
National Atmospheric Deposition Program (NADP)
Pesticides and Water Quality
Coal-Tar-Based Pavement Sealcoat, PAHs, and Environmental Health
Radionuclides
Sediment-associated contaminants
Volatile organic compounds (VOCs) (including MTBE)DRINKING WATER ISSUES
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for Contaminants
Drinking Water and Source Water ResearchRELATIONS TO AQUATIC LIFE
Stream ecology
Mercury
Streamflow Alteration
NWQP Research on Harmful Algal Blooms (HABs)TRENDS IN WATER QUALITY
Water-quality trends
Water-quality trends from lake sediment coresPROCESSES
Oxidation/Reduction (Redox)
Groundwater Age► Confused by some of the water-quality terms? Find the definitions and explanations you're looking for in the Water-Quality Glossary.
- Science
Learn more about some of the research associated with the National Water Quality Assessment project.
Filter Total Items: 33New Water-Quality Directions
As the USGS Water Resources Mission Area looks to the future, we are updating our water programs to meet 21st century water-resource challenges. As part of these updates, we are integrating the National Water Quality Assessment Project's water-resource monitoring, assessment, trends, modeling, and forecasting activities into new WMA programs.NWQP Research on Harmful Algal Blooms (HABs)
Harmful algal blooms (HABs) are caused by a complex set of physical, chemical, biological, hydrological, and meteorological conditions. Many unanswered questions remain about occurrence, environmental triggers for toxicity, and the ability to predict the timing, duration, and toxicity of HABs.Nutrients and Eutrophication
Like people, plants need nutrients, but too much of a good thing can be a problem. Nutrients, such as nitrogen and phosphorus, occur naturally, but most of the nutrients in our waterways come from human activities and sources—fertilizers, wastewater, automobile exhaust, animal waste. The USGS investigates the source, transport, and fate of nutrients and their impacts on the world around us.Drinking Water and Source Water Research
Reliable drinking water is vital for the health and safety of all Americans. The USGS monitors and assesses the quality of the water used as a source for our nation's drinking water needs.Urban Land Use and Water Quality
Wherever you live, there’s a creek or stream near you. The eighty percent of Americans who live in metropolitan areas are often unaware of the network of urban creeks—many teeming with life—that weaves through our cities and town. Nowhere are the environmental changes associated with urban development more evident than in urban streams.NWQP Water-Quality Topics
From chloride to corrosivity, from pesticides to PAHs, find the most recent National Water Quality Program (NWQP) science on these topics and effects on surface water, groundwater, and ecology. Informative web pages provide an overview and links to related web pages, publications, maps, news, and data.Emerging Contaminants
Emerging contaminants, or contaminants of emerging concern, can refer to many different kinds of chemicals, including medicines, personal care or household cleaning products, lawn care and agricultural products, among others. These chemicals make it into our Nation's lakes and rivers and have a detrimental affect on fish and other aquatic species. That have also been shown to bioaccumulate up the...Groundwater Quality Research
Every day, millions of gallons of groundwater are pumped to supply drinking water for about 140 million people, almost one-half of the Nation’s population. Learn about the quality and availability of groundwater for drinking, where and why groundwater quality is degraded, and where groundwater quality is changing.Groundwater/Surface-Water Interaction
Water and the chemicals it contains are constantly being exchanged between the land surface and the subsurface. Surface water seeps into the ground and recharges the underlying aquifer—groundwater discharges to the surface and supplies the stream with baseflow. USGS Integrated Watershed Studies assess these exchanges and their effect on surface-water and groundwater quality and quantity.Hydraulic Fracturing
Hydraulic fracturing, commonly known as fracking, is the process of injecting water, sand, and/or chemicals into a well to break up underground bedrock to free up oil or gas reserves. The USGS monitors the environmental impact of this practice across the country, from potential earthquakes to degraded groundwater quality.Agriculture and the Quality of the Nation's Waters
Intensive studies by the USGS National Water-Quality Assessment (NAWQA) Project in agricultural areas provide insight into how agricultural activities have altered the natural flow of water and the way that agricultural chemicals enter streams and aquifers, and in particular how nutrients affect algal and invertebrate communities in agricultural streams.Acid Rain
The USGS has been at the forefront of studying the impacts of acid rain for decades. How does acid rain form? What does it do to the landscape? Can it burn you like battery acid? Keep reading to find out more... - Data
Web applications and downloadable data related to NAWQA water-quality research.
Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
This product consists of time-series calculations of anthropogenic characteristics derived for 16 data themes for multiple scales covering the conterminous United States. The characteristics are those which (a) have consistent data sources, and (b) have the potential to affect the water quality of streams and rivers. All 16 data themes are provided for Hydrologic Unit Code level-10 (HUC-10) boundaFilter Total Items: 50Data Release for Secondary Hydrogeologic Regions of the Conterminous United States (ver. 2.0, June 2022)
The U.S. Geological Survey (USGS) previously identified 62 Principal Aquifers (PAs) in the U.S., with 57 located in the conterminous states. The USGS characterized areas outside of PAs as “other rocks;” other rocks account for about 40% of the area of the conterminous states. This paper subdivides the large area identified as other rocks into Secondary Hydrogeologic Regions (SHRs). SHRs are defineInput and results from a boosted regression tree (BRT) model relating base flow nitrate concentrations in the Chesapeake Bay watershed to catchment characteristics (1970-2013)
This data release contains a boosted regression tree (BRT) model (written in the R programming language), and the input and output data from that model that were used to relate base flow nitrate concentrations in the Chesapeake Bay watershed to catchment characteristics. The input data consists of two types of information: 1) surface water nitrate concentrations collected by the USGS and partnerinConcentrations of Pesticide, Pharmaceutical, and Organic Wastewater Contaminants from a Multi-Regional Assessment of Wadeable USA Streams, 2014-17
Human-use pharmaceutical, pesticide, and wastewater indicator compounds were analyzed at the U.S. Geological Survey, National Water Quality Laboratory, Denver, Colorado, in wadeable streams in 4 Regional Stream Quality Assessments: Northeast (NESQA), Southeast (SESQA), Pacific Northwest (PNSQA) and California (CSQA). Multiple (with few exceptions) samplings occurred at each site, during base flow,Pesticide and transformation product concentrations and risk quotients in U.S. headwater streams
This dataset includes a subset of previously released pesticide data (Morace and others, 2020) from the U.S. Geological Survey (USGS) National Water Quality Assessment Program (NAWQA) Regional Stream Quality Assessment (RSQA) project and the corresponding hazard index results calculated using the R package toxEval, which are relevant to Mahler and others, 2020. Pesticide and transformation productData set for an ecological risk assessment of Firpronil compounds in US streams
The phenylpyrazole insecticide fipronil and its degradates are a potential surface-water contaminant and toxicant to nontarget species such as aquatic macroinvertebrates. To better understand how fipronil, fipronil sulfide, fipronil sulfone, desulfinyl fipronil, and fipronil amide affect aquatic communities, a 30-day mesocosm experiment was run. Rock trays were colonized with natural benthic commuDissolved Pesticides in Weekly Water Samples from the NAWQA Regional Stream Quality Assessments (2013-2017)
Dissolved pesticides were measured in weekly water samples from 482 wadeable streams in five regions of the United States during 2013-2017, as part of the U.S. Geological Survey's (USGS) Regional Stream Quality Assessment (RSQA). One study was conducted each year, starting with the Midwest (2013), followed by the Southeast Piedmont (2014), Pacific Northwest (2015), Northeast (2016), and Central CaPesticide Toxicity Index (PTI) and maximum Toxic Unit (TUmax) scores and information for fish, cladocerans, and benthic invertebrates from water samples collected at National Water Quality Network sites during Water Years 2013-2017
During 2013-2017, the U.S. Geological Survey, National Water-Quality Assessment (NAWQA) Project, collected water samples year-round from the National Water Quality Network - Rivers and Streams (NWQN) and reported on 221 pesticides at 72 sites across the US in agricultural, developed, and mixed land use watersheds. Pesticide Toxicity Index (PTI) scores, a screening-level tool that uses an additive,Datasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January through December 2016, and Previously Unpublished Data from 2013 to 2015
Groundwater-quality data were collected from 648 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program and are included in this report. Most of the wells (514) were sampled from January through December 2016 and 60 of them were sampled in 2013 and 74 in 2014. The data were collected from seven types of well networks: principal aData for Fluoride Occurrence in United States Groundwater
Data from 38,105 wells were used to characterize fluoride occurrence in untreated United States groundwater. The data were retrieved from the U.S. Geological Survey (USGS) National Water Information System (NWIS). Groundwater samples were collected from 1988 to 2017 in the conterminous United States. Data for groundwater included in this dataset are pH, water temperature, and concentrations of disConcentrations of pesticides associated with streambed sediment and biofilm in California streams, 2017
Hydrophobic (sediment-associated) pesticides were measured in sediment samples collected from 82 wadeable streams and in biofilm in 54 of those streams in the Central California Foothills and Coastal Mountains ecoregion.115 current-use and 3 legacy pesticides were measured in stream sediment; 93 of the current-use pesticides and the same 3 legacy pesticides were measured in biofilm. On average 4 t
Urban sediment and fallout radionuclide input characteristics of Dead Run watershed in Catonsville, Maryland for 2017-2018 (ver. 1.1, March 2020)
This metadata record documents two comma delimited tables that contain information on fallout radionuclides and urban sediments within Dead Run watershed in Catonsville, Baltimore County, Maryland. Measurements include radiological activity for rainwater and sediment samples, sediment particle size information, suspended sediment concentration measurements, elemental composition of sediments, andPesticides in Daily and Weekly Water Samples from the NAWQA Midwest and Southeast Stream Quality Assessments (2013-2014)
These datasets are one component of the multistressor studies conducted in Midwest streams in 2013 (MSQA) and in Southeast streams in 2014 (SESQA) by the U.S. Geological Survey National Water Quality Assessment Project. High-frequency small-volume autosamplers were deployed at 7 sites each in MSQA and SESQA that collected daily and weekly composite water samples, which were analyzed for 225 pestic - Multimedia
- Publications
The NAWQA project publishes reports that describe water-quality and ecological conditions; whether conditions are changing over time; and how natural features and human activities affect these conditions.
The most recent publications and selected national-scale reports are listed here.
Flow modification in the Nation’s streams and rivers
This report summarizes a national assessment of flowing waters conducted by the U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) Project and addresses several pressing questions about the modification of natural flows in streams and rivers. The assessment is based on the integration, modeling, and synthesis of monitoring data collected by the USGS and the U.S. EnvironmentaAuthorsDaren Carlisle, David M. Wolock, Christopher P. Konrad, Gregory J. McCabe, Ken Eng, Theodore E. Grantham, Barbara MahlerFilter Total Items: 107Is there an urban pesticide signature? Urban streams in five U.S. regions share common dissolved-phase pesticides but differ in predicted aquatic toxicity
Pesticides occur in urban streams globally, but the relation of occurrence to urbanization can be obscured by regional differences. In studies of five regions of the United States, we investigated the effect of region and urbanization on the occurrence and potential toxicity of dissolved pesticide mixtures. We analyzed 225 pesticide compounds in weekly discrete water samples collected during 6–12AuthorsLisa H. Nowell, Patrick W. Moran, Laura M. Bexfield, Barbara Mahler, Peter C. Van Metre, Paul Bradley, Travis S. Schmidt, Daniel T. Button, Sharon L. QiByEcosystems Mission Area, Water Resources Mission Area, Contaminant Biology, Environmental Health Program, Toxic Substances Hydrology, California Water Science Center, Fort Collins Science Center, Maryland-Delaware-D.C. Water Science Center, New Mexico Water Science Center, Oklahoma-Texas Water Science Center, Oregon Water Science Center, Pennsylvania Water Science Center, South Atlantic Water Science Center (SAWSC), Upper Midwest Environmental Sciences Center, Upper Midwest Water Science Center, Washington Water Science CenterGroundwater quality in the Colorado Plateaus aquifers, western United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Colorado Plateaus aquifers constitute one of the important areas being evaluated.AuthorsJames R. Degnan, MaryLynn MusgroveGroundwater quality in the Edwards-Trinity aquifer system
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Edwards-Trinity aquifer system constitutes one of the important aquifers being evaluated.AuthorsMaryLynn MusgroveGroundwater quality in selected Stream Valley aquifers, western United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Stream Valley aquifers constitute one of the important aquifer systems being evaluated.AuthorsJames A. KingsburyGroundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January 2017 through December 2019
Groundwater-quality environmental data were collected from 983 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water Quality Program and are included in this report. The data were collected from six types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-usAuthorsJames A. Kingsbury, Laura M. Bexfield, Terri Arnold, MaryLynn Musgrove, Melinda L. Erickson, James R. Degnan, Anthony J. Tesoriero, Bruce D. Lindsey, Kenneth BelitzInclusion of pesticide transformation products is key to estimating pesticide exposures and effects in small U.S. streams
Improved analytical methods can quantify hundreds of pesticide transformation products (TPs), but understanding of TP occurrence and potential toxicity in aquatic ecosystems remains limited. We quantified 108 parent pesticides and 116 TPs in more than 3 700 samples from 442 small streams in mostly urban basins across five major regions of the United States. TPs were detected nearly as frequently aAuthorsBarbara Mahler, Lisa H. Nowell, Mark W. Sandstrom, Paul Bradley, Kristin Romanok, Christopher Konrad, Peter Van MetreByEcosystems Mission Area, Water Resources Mission Area, Contaminant Biology, Environmental Health Program, Toxic Substances Hydrology, California Water Science Center, New Jersey Water Science Center, Oklahoma-Texas Water Science Center, South Atlantic Water Science Center (SAWSC), Washington Water Science Center, National Water Quality LaboratoryNitrogen and phosphorus sources and delivery from the Mississippi/Atchafalaya River Basin: An update using 2012 SPARROW models
Nitrogen (N) and phosphorus (P) inputs throughout the Mississippi/Atchafalaya River Basin (MARB) have been linked to the Gulf of Mexico hypoxia and water‐quality problems throughout the MARB. To describe N and P loading throughout the MARB, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were previously developed based on nutrient inputs and management similar to 1992 andAuthorsDale M. Robertson, David A. SaadMulti-region assessment of chemical mixture exposures and predicted cumulative effects in USA wadeable urban/agriculture-gradient streams
Chemical-contaminant mixtures are widely reported in large stream reaches in urban/agriculture-developed watersheds, but mixture compositions and aggregate biological effects are less well understood in corresponding smaller headwaters, which comprise most of stream length, riparian connectivity, and spatial biodiversity. During 2014–2017, the U.S. Geological Survey (USGS) measured 389 unique orga
AuthorsPaul Bradley, Celeste A. Journey, Kristin Romanok, Sara Breitmeyer, Daniel T. Button, Daren M. Carlisle, Bradley Huffman, Barbara Mahler, Lisa H. Nowell, Sharon L. Qi, Kelly Smalling, Ian R. Waite, Peter C. Van MetreByEcosystems Mission Area, Water Resources Mission Area, Contaminant Biology, Environmental Health Program, Toxic Substances Hydrology, California Water Science Center, Colorado Water Science Center, Maryland-Delaware-D.C. Water Science Center, New Jersey Water Science Center, Ohio-Kentucky-Indiana Water Science Center, Oklahoma-Texas Water Science Center, Oregon Water Science Center, South Atlantic Water Science Center (SAWSC)Changing climate drives future streamflow declines and challenges in meeting water demand across the southwestern United States
Society and the environment in the arid southwestern United States depend on reliable water availability, yet current water use outpaces supply. Water demand is projected to grow in the future and climate change is expected to reduce supply. To adapt, water managers need robust estimates of future regional water supply to support management decisions. To address this need, we estimate future streaAuthorsOlivia L. Miller, Annie Laura Putman, Jay R. Alder, Matthew P. Miller, Daniel Jones, Daniel WiseThree-dimensional distribution of residence time metrics in the glaciated United States using metamodels trained on general numerical models
Residence time distribution (RTD) is a critically important characteristic of groundwater flow systems; however, it cannot be measured directly. RTD can be inferred from tracer data with analytical models (few parameters) or with numerical models (many parameters). The second approach permits more variation in system properties but is used less frequently than the first because large‐scale numericAuthorsJ. Jeffrey Starn, Leon J. Kauffman, Carl S. Carlson, James E. Reddy, Michael N. FienenLithium in groundwater used for drinking-water supply in the United States
Lithium concentrations in untreated groundwater from 1464 public-supply wells and 1676 domestic-supply wells distributed across 33 principal aquifers in the United States were evaluated for spatial variations and possible explanatory factors. Concentrations nationwide ranged from <1 to 396 μg/L (median of 8.1) for public supply wells and <1 to 1700 μg/L (median of 6 μg/L) for domestic supply wellsAuthorsBruce D. Lindsey, Kenneth Belitz, Charles A. Cravotta, Patricia Toccalino, Neil M. DubrovskyThe occurrence and distribution of strontium in U.S. groundwater
Groundwater samples from 32 principal aquifers across the United States (U.S.) provide a broad spatial scope of the occurrence and distribution of strontium (Sr) and are used to assess environments and factors that influence Sr concentration. Strontium is a common trace element in soils, rocks, and water and is ubiquitous in groundwater with detectable concentrations in 99.8% of samples (n=4,824;AuthorsMaryLynn Musgrove - Web Tools
Interactive mappers and web applications related to NAWQA water-quality research.
Groundwater Quality: Decadal Change
Almost one-half of the U.S. population rely on groundwater for their water supply, and demand for groundwater for public supply, irrigation, and agriculture continues to increase. This mapper shows how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation.
- Software
RSPARROW
RSPARROW, now available on the USGS GitLab repository, provides the first open-source version of the USGS SPARROW water-quality model
SPARROW Modeling Program
SPARROW is a popular watershed modeling technique, distributed by the USGS, that estimates the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources.
- News
Isotopic tracers in fish in Northeast provide clue to mercury sources
Isotopes of mercury in fish can indicate the source of that mercury, reports a new study from the USGS Regional Stream Quality Assessment.
Filter Total Items: 45