Skip to main content
U.S. flag

An official website of the United States government

Storm Impacts

Filter Total Items: 58

Woods Hole Coastal and Marine Science Center in the Field

In the Field; Land, Sea, and Air Woods Hole Coastal and Marine Science Center scientists and staff study coastal and ocean resources and processes from the land, sea, and air, to shorelines and estuaries to the continental shelf, deep sea, lake floor, river bottoms and shallow subsurfaces environments. We have implemented new safety and fieldwork processes to maintain social distancing to ensure...
link

Woods Hole Coastal and Marine Science Center in the Field

In the Field; Land, Sea, and Air Woods Hole Coastal and Marine Science Center scientists and staff study coastal and ocean resources and processes from the land, sea, and air, to shorelines and estuaries to the continental shelf, deep sea, lake floor, river bottoms and shallow subsurfaces environments. We have implemented new safety and fieldwork processes to maintain social distancing to ensure...
Learn More

Sea Floor Stress and Sediment Mobility Database

The U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database contains estimates of wave-current bottom stress and sediment mobility for the U.S. Atlantic and Gulf Coast continental shelf regions.
link

Sea Floor Stress and Sediment Mobility Database

The U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database contains estimates of wave-current bottom stress and sediment mobility for the U.S. Atlantic and Gulf Coast continental shelf regions.
Learn More

Using Video Imagery to Study Coastal Change: Barter Island, Alaska

For a short study period, two video cameras overlooked the coast from atop the coastal bluff of Barter Island in northern Alaska. The purpose was to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.
link

Using Video Imagery to Study Coastal Change: Barter Island, Alaska

For a short study period, two video cameras overlooked the coast from atop the coastal bluff of Barter Island in northern Alaska. The purpose was to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.
Learn More

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
link

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
Learn More

Geologic Mapping of the Massachusetts Seafloor

The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM) is conducting geologic mapping of the sea floor to characterize the surface and shallow subsurface geologic framework within the Massachusetts coastal zone. The long-term goal of this mapping effort is to produce high-resolution geologic maps and a Geographic Information System (GIS) that will...
link

Geologic Mapping of the Massachusetts Seafloor

The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM) is conducting geologic mapping of the sea floor to characterize the surface and shallow subsurface geologic framework within the Massachusetts coastal zone. The long-term goal of this mapping effort is to produce high-resolution geologic maps and a Geographic Information System (GIS) that will...
Learn More

Coastal and Estuarine Dynamics Project

Coastal and Estuarine Dynamics Project exists to support ocean, coastal and estuarine research. The staff have a broad set of skills; from instrument design and development to all forms of work at sea to software development and data management. The team has successfully deployed and recovered more than 1000 data collection platforms for research in the last 30 years.
link

Coastal and Estuarine Dynamics Project

Coastal and Estuarine Dynamics Project exists to support ocean, coastal and estuarine research. The staff have a broad set of skills; from instrument design and development to all forms of work at sea to software development and data management. The team has successfully deployed and recovered more than 1000 data collection platforms for research in the last 30 years.
Learn More

Environmental Geochemistry

Coastal Environmental Geochemistry research at the Woods Hole Coastal and Marine Science Center spans multiple ecosystems and topics, including coastal wetlands, aquifers, and estuaries, with the goal of providing data and guidance to federal, state, local, and private land owners and managers on these vital ecosystems.
link

Environmental Geochemistry

Coastal Environmental Geochemistry research at the Woods Hole Coastal and Marine Science Center spans multiple ecosystems and topics, including coastal wetlands, aquifers, and estuaries, with the goal of providing data and guidance to federal, state, local, and private land owners and managers on these vital ecosystems.
Learn More

Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES)

This project assesses the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico (Grand Bay Alabama/Mississippi and Vermilion Bay, Louisiana) and the Atlantic coast (Chincoteague Bay, Virginia/Maryland).
link

Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES)

This project assesses the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico (Grand Bay Alabama/Mississippi and Vermilion Bay, Louisiana) and the Atlantic coast (Chincoteague Bay, Virginia/Maryland).
Learn More

Sea Floor Mapping Group

The Sea Floor Mapping Group (SFMG) is a core capability at the Woods Hole Coastal & Marine Science Center (WHCMSC) that provides support for coastal, lacustrine and marine geologic research. The staff has a wide-range of expertise and is responsible for geophysical and sampling data acquisition, processing, interpretation and publication, logistics, design, and research and development. SFMG has...
link

Sea Floor Mapping Group

The Sea Floor Mapping Group (SFMG) is a core capability at the Woods Hole Coastal & Marine Science Center (WHCMSC) that provides support for coastal, lacustrine and marine geologic research. The staff has a wide-range of expertise and is responsible for geophysical and sampling data acquisition, processing, interpretation and publication, logistics, design, and research and development. SFMG has...
Learn More

Aerial Imaging and Mapping

The Aerial Imaging and Mapping group (AIM), at the U.S. Geological Survey Woods (USGS) Hole Coastal and Marine Science Center provides UAS services to scientists to advance the science mission of the Coastal and Marine Geology Program. Scientists at the Woods Hole Coastal and Marine Science Center have been using UASs to acquire imagery of coastal and wetland environments, which is then used to...
link

Aerial Imaging and Mapping

The Aerial Imaging and Mapping group (AIM), at the U.S. Geological Survey Woods (USGS) Hole Coastal and Marine Science Center provides UAS services to scientists to advance the science mission of the Coastal and Marine Geology Program. Scientists at the Woods Hole Coastal and Marine Science Center have been using UASs to acquire imagery of coastal and wetland environments, which is then used to...
Learn More

Cross-Shore and Inlets (CSI) Processes

Exchange of flows, sediment, and biological particles between the inner shelf and back-barrier estuaries are significant for determination of extreme water levels, maintenance and formation of inlets, barrier-island evolution, and pollutant and larval transport. These connections are controlled by cross-shore processes including wave-driven inner-shelf and near-shore processes, dune overtopping...
link

Cross-Shore and Inlets (CSI) Processes

Exchange of flows, sediment, and biological particles between the inner shelf and back-barrier estuaries are significant for determination of extreme water levels, maintenance and formation of inlets, barrier-island evolution, and pollutant and larval transport. These connections are controlled by cross-shore processes including wave-driven inner-shelf and near-shore processes, dune overtopping...
Learn More

Beach-dependent Shorebirds

Policy-makers, individuals from government agencies, and natural resource managers are under increasing pressure to manage changing coastal areas to meet social, economic, and natural resource demands, particularly under a regime of sea-level rise. Scientific knowledge of coastal processes and habitat-use can support decision-makers as they balance these often-conflicting human and ecological...
link

Beach-dependent Shorebirds

Policy-makers, individuals from government agencies, and natural resource managers are under increasing pressure to manage changing coastal areas to meet social, economic, and natural resource demands, particularly under a regime of sea-level rise. Scientific knowledge of coastal processes and habitat-use can support decision-makers as they balance these often-conflicting human and ecological...
Learn More