Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2539

Observing the Greatest Earthquakes: AGU Chapman Conference on Giant Earthquakes and Their Tsunamis: Viña del Mar and Valparaíso, Chile, 16–20 May 2010

An AGU Chapman Conference commemorated the fiftieth anniversary of the 1960 M 9.5 Chile earthquake. Participants reexamined this earthquake, the largest ever recorded instrumentally, and compared it with Chile's February 2010 M 8.8 earthquake. They also addressed the giant earthquake potential of subduction zones worldwide and strategies for reducing losses due to tsunamis. The conference drew 96
Authors
Brian F. Atwater, Sergio Barrientos, Inés Cifuentes, Marco Cisternas, Kelin Wang

On the resolution of shallow mantle viscosity structure using post-earthquake relaxation data: Application to the 1999 Hector Mine, California, earthquake

Most models of lower crust/mantle viscosity inferred from postearthquake relaxation assume one or two uniform-viscosity layers. A few existing models possess apparently significant radially variable viscosity structure in the shallow mantle (e.g., the upper 200 km), but the resolution of such variations is not clear. We use a geophysical inverse procedure to address the resolving power of inferred
Authors
Fred F. Pollitz, Wayne R. Thatcher

Passive seismic monitoring of natural and induced earthquakes: Case studies, future directions and socio-economic relevance

An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully appli
Authors
Marco Bohnhoff, Georg Dresen, William L. Ellsworth, Hisao Ito

Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault

The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic ‘non-volcanic’ tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the
Authors
David R. Shelly

The water table

The water table is a fundamental concept in hydrogeology, yet it is frequently incorrectly defined. For example, both the NGWA (2003) and AGI (Neuendorf et al. 2005) glossaries define the water table as the atmospheric pressure surface that is coincident with the top of the zone of saturation. This definition is also found occasionally in groundwater textbooks as well as in primers, where it is si
Authors
Thomas L. Holzer

Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid t
Authors
Po-Chun. Chen, Wuu-Liang Huang, Laura A. Stern

The ShakeOut earthquake scenario: Verification of three simulation sets

This paper presents a verification of three simulations of the ShakeOut scenario, an Mw 7.8 earthquake on a portion of the San Andreas fault in southern California, conducted by three different groups at the Southern California Earthquake Center using the SCEC Community Velocity Model for this region. We conducted two simulations using the finite difference method, and one by the finite element me
Authors
J. Bielak, R.W. Graves, K.B. Olsen, R. Taborda, L. Ramirez-Guzman, S.M. Day, G.P. Ely, D. Roten, T.H. Jordan, P.J. Maechling, J. Urbanic, Y. Cui, G. Juve

Seismic hazard mapping of California considering site effects

In this paper, we have combined the U.S. Geological Survey's National Seismic Hazard Maps model with the California geologic map showing 17 generalized geologic units that can be defined by their VS30. We regrouped these units into seven VS30 values and calculated a probabilistic seismic hazard map for the entire state for each VS30 value. By merging seismic hazard maps based on the seven differen
Authors
E. Kalkan, C.J. Wills, D.M. Branum

Intensity, magnitude, location and attenuation in India for felt earthquakes since 1762

A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earthquakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and
Authors
Walter Szeliga, Susan Hough, Stacey Martin, Roger G. Bilham

Evaluation of geodetic and geologic datasets in the Northern Walker Lane-Summary and recommendations of the Workshop

The Northern Walker Lane comprises a complex network of active faults in northwestern Nevada and northeastern California bound on the west by the Sierra Nevada and on the east by the extensional Basin and Range Province. Because deformation is distributed across sets of discontinuous faults, it is particularly challenging to integrate geologic and geodetic data in the NWL to assess the region's se
Authors
Richard W. Briggs, William C. Hammond

Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly-heterogeneous crustal stress

It has been proposed that the crustal stress field contains small-length-scale heterogeneity of much larger amplitude than the uniform background stress. This model predicts that earthquake focal mechanisms should reflect the loading stress rather than the uniform background stress. So, if the heterogeneous stress hypothesis is correct, focal mechanisms before and after a large earthquake should a
Authors
Jeanne L. Hardebeck

The North American upper mantle: Density, composition, and evolution

The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in thr
Authors
Walter D. Mooney, Mikhail K. Kaban