Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 860

Incorporating spatially heterogeneous infiltration capacity into hydrologic models with applications for simulating post‐wildfire debris flow initiation

Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simu
Authors
Luke A. McGuire, Francis K. Rengers, Jason W. Kean, Dennis M. Staley, Benjamin B. Mirus

Improving near‐real‐time coseismic landslide models: Lessons learned from the 2016 Kaikōura, New Zealand, earthquake

The U.S. Geological Survey (USGS) is developing near‐real‐time global earthquake‐triggered‐landslide products to augment the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system. The 14 November 2016 MwMw 7.8 Kaikōura, New Zealand, earthquake provided a test case for evaluating the performance and near‐real‐time response applicability of three published global seismically induc
Authors
Kate E. Allstadt, Randall W. Jibson, Eric M. Thompson, Chris Massey, David J. Wald, Jonathan W. Godt, Francis K. Rengers

Overview of the geologic effects of the November 14, 2016, Mw 7.8 Kaikoura, New Zealand, earthquake

The November 14, 2016, Kaikoura, New Zealand, earthquake (moment magnitude [Mw] 7.8) triggered more than 10,000 landslides over an area of about 12,000 square kilometers in the northeastern part of the South Island of New Zealand. In collaboration with GNS Science (the Institute of Geological and Nuclear Science Limited), we conducted ground and helicopter reconnaissance of the affected areas and
Authors
Randall W. Jibson, Kate E. Allstadt, Francis K. Rengers, Jonathan W. Godt

THRESH—Software for tracking rainfall thresholds for landslide and debris-flow occurrence, user manual

Precipitation thresholds are used in many areas to provide early warning of precipitation-induced landslides and debris flows, and the software distribution THRESH is designed for automated tracking of precipitation, including precipitation forecasts, relative to thresholds for landslide occurrence. This software is also useful for analyzing multiyear precipitation records to compare timing of thr
Authors
Rex L. Baum, Sarah J. Fischer, Jacob C. Vigil

The evolution of a colluvial hollow to a fluvial channel with periodic steps following two transformational disturbances: A wildfire and a historic flood

The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wil
Authors
Francis K. Rengers, Luke McGuire, Brian A. Ebel, G. E. Tucker

Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria

Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utilit
Authors
Matthew A. Thomas, Benjamin B. Mirus, Brian D. Collins, Ning Lu, Jonathan W. Godt

Clayey landslide initiation and acceleration strongly modulated by soil swelling

Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poor
Authors
William Schulz, Joel B. Smith, Gonghui Wang, Yao Jiang, Joshua J. Roering

Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide

The combined application of continuous Global Positioning System data (high temporal resolution) with spaceborne interferometric synthetic aperture radar data (high spatial resolution) can reveal much more about the complexity of large landslide movement than is possible with geodetic measurements tied to only a few specific measurement sites. This approach is applied to an ~4 km2 reactivated tran
Authors
Xie Hu, Zhong Lu, Thomas C. Pierson, Rebecca Kramer, David L. George

The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal

Coseismic landslides pose immediate and prolonged hazards to mountainous communities, and provide a rare opportunity to study the effect of large earthquakes on erosion and sediment budgets. By mapping landslides using high-resolution satellite imagery, we find that the 25 April 2015 Mw7.8 Gorkha earthquake and aftershock sequence produced at least 25,000 landslides throughout the steep Himalayan
Authors
Kevin Roback, Marin K. Clark, A. Joshua West, Dimitrios Zekkos, Gen Li, Sean F. Gallen, Deepak Chamlagain, Jonathan W. Godt

An open repository of earthquake-triggered ground-failure inventories

Earthquake-triggered ground failure, such as landsliding and liquefaction, can contribute significantly to losses, but our current ability to accurately include them in earthquake-hazard analyses is limited. The development of robust and widely applicable models requires access to numerous inventories of ground failures triggered by earthquakes that span a broad range of terrains, shaking characte
Authors
Robert G. Schmitt, Hakan Tanyas, M. Anna Nowicki Jessee, Jing Zhu, Katherine M. Biegel, Kate E. Allstadt, Randall W. Jibson, Eric M. Thompson, Cees J. van Westen, Hiroshi P. Sato, David J. Wald, Jonathan W. Godt, Tolga Gorum, Chong Xu, Ellen M. Rathje, Keith L. Knudsen

Can thermoluminescence be used to determine soil heating from a wildfire?

The Silverado wildfire occurred from September 12 to 20, 2014, burning 960 acres in Orange County, California. Soil samples from within the burn area were obtained and the thermoluminescence (TL) properties of those samples were compared against a control sample to understand wildfire heating. We performed a series of experiments investigating the degree to which the control differed from the wild
Authors
Francis K. Rengers, Vasilis Pagonis, Shannon A. Mahan

Disturbance hydrology: Preparing for an increasingly disturbed future

This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequ
Authors
Benjamin B. Mirus, Brian A. Ebel, Christian H. Mohr, Nicolas Zegre