Skip to main content
U.S. flag

An official website of the United States government

Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection

December 16, 2020

Previously, Tsurutani and Lakhina (2014, https://doi.org/10.1002/2013GL058825) created estimates for a “perfect” interplanetary coronal mass ejection and performed simple calculations for the response of geospace, including . In this study, these estimates are used to drive a coupled magnetohydrodynamic-ring current-ionosphere model of geospace to obtain more physically accurate estimates of the geospace response to such an event. The sudden impulse phase is examined and compared to the estimations of Tsurutani and Lakhina (2014, https://doi.org/10.1002/2013GL058825). The physics-based simulation yields similar estimates for Dst rise, magnetopause compression, and equatorial  values as the previous study. However, results diverge away from the equator.  values in excess of 30 nT/s are found as low as  magnetic latitude. Under southward interplanetary magnetic field conditions, magnetopause erosion combines with strong region one Birkeland currents to intensify the  response. Values obtained here surpass those found in historically recorded events and set the upper threshold of extreme geomagnetically induced current activity at Earth.

Publication Year 2021
Title Numerical simulations of the geospace response to the arrival of an idealized perfect interplanetary coronal mass ejection
DOI 10.1029/2020SW002489
Authors Daniel T. Welling, Jeffrey J. Love, E. Joshua Rigler, Denny M. Oliveira, Colin M. Komar, Steven Morley
Publication Type Article
Publication Subtype Journal Article
Series Title Space Weather
Index ID 70222574
Record Source USGS Publications Warehouse
USGS Organization Geologic Hazards Science Center