Skip to main content
U.S. flag

An official website of the United States government

Fire modulates climate change response of simulated aspen distribution across topoclimatic gradients in a semi-arid montane landscape

February 5, 2015

Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.

Publication Year 2015
Title Fire modulates climate change response of simulated aspen distribution across topoclimatic gradients in a semi-arid montane landscape
DOI 10.1007/s10980-015-0160-1
Authors Jian Yang, Peter J. Weisberg, Douglas J. Shinneman, Thomas E. Dilts, Susan L. Earnst, Robert M Scheller
Publication Type Article
Publication Subtype Journal Article
Series Title Landscape Ecology
Index ID 70157345
Record Source USGS Publications Warehouse
USGS Organization Forest and Rangeland Ecosystem Science Center