Data and Tools

Science Datasets

The data collected and the techniques used by USGS scientists should conform to or reference national and international standards and protocols if they exist and when they are relevant and appropriate. For datasets of a given type, and if national or international metadata standards exist, the data are indexed with metadata that facilitates access and integration.

Filter Total Items: 5,380
Date published: September 9, 2018

NOAA Commercial Fishing Reports 1971-2016

Collection of NOAA commercial fishing reports from the Great Lakes for the years 1971 through 2016.

Date published: September 6, 2018

Timing of first and last calls and median calling peaks for Pseudacris crucifer, and of the first call for Hyla chrysoscelis/versicolor, at six wetlands in the St. Croix National Scenic Riverway from 2008-2012.

To better understand relations of annual calling phenophases for Pseudacris crucifer, and of the first calls of the season for Hyla chrysoscelis/versicolor, to the timing of the start of the calling season, we compared these dynamics for six wetlands in the St. Croix National Scenic Riverway from 2008 to 2012. We installed an acoustic recorder at each site prior to the start of each calling...

Date published: September 5, 2018

Patuxent Shapefiles depicting the valley bottom areas.

The shapefiles depict the valley bottom areas over which HEC-RAS model results were summarized. Valley bottoms were manually delineated in ArcMap by visually interpreting LIDAR terrain models and aerial imagery. Substantial changes in elevation, curvature, and slope were interpreted within the context of their position within the study reach to be channel banks and valley walls. Such areas...

Date published: September 5, 2018

Seneca Terrain models

Terrain models representing river channel and terrestrial surface elevations were developed for use in 2D hydraulic modeling with HEC-RAS software. Channel bed elevations were determined from cross-sectional field surveys (Seneca Creek and Patapsco River) or manual corrections of the LIDAR data (Patuxent River and Little Gunpowder Falls) and integrated with the terrestrial LIDAR data.

Date published: September 5, 2018

Patuxent Terrain models

Terrain models representing river channel and terrestrial surface elevations were developed for use in 2D hydraulic modeling with HEC-RAS software. Channel bed elevations were determined from cross-sectional field surveys (Seneca Creek and Patapsco River) or manual corrections of the LIDAR data (Patuxent River and Little Gunpowder Falls) and integrated with the terrestrial LIDAR data.

Date published: September 5, 2018

LittleGunpowderFalls Shapefiles depicting the valley bottom areas.

The shapefiles depict the valley bottom areas over which HEC-RAS model results were summarized. Valley bottoms were manually delineated in ArcMap by visually interpreting LIDAR terrain models and aerial imagery. Substantial changes in elevation, curvature, and slope were interpreted within the context of their position within the study reach to be channel banks and valley walls. Such areas...

Date published: September 5, 2018

Seneca Shapefiles depicting the valley bottom areas.

The shapefiles depict the valley bottom areas over which HEC-RAS model results were summarized. Valley bottoms were manually delineated in ArcMap by visually interpreting LIDAR terrain models and aerial imagery. Substantial changes in elevation, curvature, and slope were interpreted within the context of their position within the study reach to be channel banks and valley walls. Such areas...

Date published: September 5, 2018

Patapsco Shapefiles depicting the valley bottom areas.

The shapefiles depict the valley bottom areas over which HEC-RAS model results were summarized. Valley bottoms were manually delineated in ArcMap by visually interpreting LIDAR terrain models and aerial imagery. Substantial changes in elevation, curvature, and slope were interpreted within the context of their position within the study reach to be channel banks and valley walls. Such areas...

Date published: September 5, 2018

Little Gunpowder Falls Terrain models

Terrain models representing river channel and terrestrial surface elevations were developed for use in 2D hydraulic modeling with HEC-RAS software. Channel bed elevations were determined from cross-sectional field surveys (Seneca Creek and Patapsco River) or manual corrections of the LIDAR data (Patuxent River and Little Gunpowder Falls) and integrated with the terrestrial LIDAR data.

Date published: September 5, 2018

Patapsco Terrain models

Terrain models representing river channel and terrestrial surface elevations were developed for use in 2D hydraulic modeling with HEC-RAS software. Channel bed elevations were determined from cross-sectional field surveys (Seneca Creek and Patapsco River) or manual corrections of the LIDAR data (Patuxent River and Little Gunpowder Falls) and integrated with the terrestrial LIDAR data.

Date published: September 5, 2018

iCoast - Did the Coast Change? Crowd-sourced Coastal Classifications

On October 29, 2012, Hurricane Sandy made landfall as a post-tropical storm near Brigantine, New Jersey, with sustained winds of 70 knots (80 miles per hour) and tropical-storm-force winds extending 870 nautical miles in diameter (Blake and others, 2013). The effects of Hurricane Sandy’s winds and storm surge included erosion of the beaches and dunes as well as breaching of barrier islands in...

Date published: September 5, 2018

Patuxent Shapefiles depicting the 2D HEC-RAS hydraulic modeling domains

The shapefiles depict the 2D HEC-RAS hydraulic modeling domains used for the simulations described in the associated publication. Model domains were delineated in the HEC-RAS geometry editor to encompass river-valley bottoms and adjacent hillslopes of four river reaches of contrasting contributing area and morphology: Seneca Creek at Dawsonville, MD; Patapsco River at Woodstock, MD; Patuxent...