Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2674

Historically active volcanoes of Alaska reference deck

No abstract available.
Authors
Cheryl E. Cameron, Kristen A. H. Janssen, Tim R. Orr, Matthew W. Loewen

Lessons learned from the 2022 CONVERSE Monogenetic Volcanism Response Scenario exercise

When volcanic unrest occurs, the scientific community can advance fundamental understanding of volcanic systems, but only with coordination before, during, and after the event across academic and governmental agencies. To develop a coordinated response plan, the Community Network for Volcanic Eruption Response (CONVERSE) orchestrated a scenario exercise centered around a hypothetical volcanic cris
Authors
Yolanda C Lin, Einat Lev, Ria Mukerji, Tobias P. Fischer, Charles Connor, Wendy K. Stovall, M. Poland, Alexandra M. Iezzi, Christelle Wauthier, Judit Gonzalez-Santana, Heather M. Wright, Samantha Wolf, Tobi Kasali

Microgravity as a tool for eruption forecasting

Detection of gravity change over time has been used to better understand magmatic activity at volcanoes for decades, but the technique is not commonly applied to forecasting eruptions. In contrast, other tools, notably seismic, deformation, and gas monitoring have made exceptional strides in the past several decades and form the foundation for eruption forecasting, especially during the final buil
Authors
Elske de Zeeuw-van Dalfsen, Michael P. Poland

Eruption of stagnant lava from an inactive perched lava lake

Lava flow hazards are usually thought to end when the erupting vent becomes inactive, but this is not always the case. At Kīlauea in August 2014, a spiny ʻaʻā flow erupted from the levee of a crusted perched lava lake that had been inactive for a month, and the surface of the lava lake subsided as the flow advanced downslope over the following few days. Topography constructed from oblique aerial p
Authors
T. Orr, Michael H. Zoeller, Edward W. Llewellin, Matthew R. Patrick

Lawetlat'la—Mount St. Helens—Land in transformation

This poster provides an overview of Mount St. Helens’ eruption history and emphasizes the continuous transformation of the volcanic landscape and its ecosystems. After each eruption, the landscape and ecosystems are not so much restored as they are morphed into new forms and patterns.
Authors
Carolyn L. Driedger, Alysa Adams, Michael A. Clynne, Kristi Cochrane, Abi Groskopf, Emma Johnson, Heather Monti, Elizabeth Westby

Comment on “A new decade in seismoacoustics (2010–2022)” by Fransiska Dannemann Dugick, Clinton Koch, Elizabeth Berg, Stephen Arrowsmith, and Sarah Albert

An increase in seismic stations also having microbarographs has led to increased interest in the field of seismoacoustics. A review of the recent advances in this field can be found in Dannemann Dugick et al. (2023). The goal of this note is to draw the attention of the readers of Dannemann Dugick et al. (2023) to several additional interactions between the solid Earth and atmosphere that have not
Authors
Adam T. Ringler, Robert E. Anthony, Brian Shiro, Toshiro Tanimoto, David C. Wilson

The diversity of volcanic hazard maps around the world: Insights from map makers

The IAVCEI Working Group on Hazard Mapping has been active since 2014 and has facilitated several activities to enable sharing of experiences of how volcanic hazard maps are developed and used around the world. One key activity was a global survey of 90 map makers and practitioners to collect data about official, published volcanic hazard maps and how they were developed. The survey asked question
Authors
Jan Lindsay, Danielle Charlton, Mary Ann T. Clive, Daniel Bertin, Sarah E. Ogburn, Heather M. Wright, John W. Ewert, Eliza S. Calder, Bastian Steinke

Development of a volcanic risk management system at Mount St. Helens—1980 to present

Here, we review volcanic risk management at Mount St. Helens from the perspective of the US Geological Survey’s (USGS) experience over the four decades since its 18 May 1980 climactic eruption. Prior to 1980, volcano monitoring, multidisciplinary eruption forecasting, and interagency coordination for eruption response were new to the Cascade Range. A Mount St. Helens volcano hazards assessment had
Authors
Heather M. Wright, Carolyn L. Driedger, John S. Pallister, Christopher G. Newhall, Michael A. Clynne, John W. Ewert

Earth’s mantle composition revealed by mantle plumes

Mantle plumes originate at depths near the core−mantle boundary (~2,800 km). As such, they provide invaluable information about the composition of the deep mantle and insight into convection, crustal formation, and crustal recycling, as well as global heat and volatile budgets. In this Review, we discuss the effectiveness and challenges of using isotopic analyses of plume-generated rocks to infer
Authors
Dominique Weis, Karen Harpp, Lauren N Harrison, Maud Boyet, Catherine Chauvel, Cinzia Farnetani, Val Finlayson, Kanai Lee, Rita Paraï, Anat Shahar, Nicole Williamson

Complex styles of phreatomagmatic explosions at Kīlauea Volcano, Hawaii, controlled by magma structure

Explosive eruptions at basaltic volcanoes remain poorly understood. Kīlauea Volcano is a type locality for basaltic eruptions and is well-known for effusive activity. However, more than 7 m of phreatomagmatic Keanakākoʻi Tephra unit D deposits from explosive eruptions crown the southern rim of the summit caldera and provide a stark reminder of Kīlauea’s explosive past and future potential. We used
Authors
Jo Schmith, Donald A. Swanson

Physicochemical hazard assessment of ash and dome rock from the 2021 eruption of La Soufrière, St Vincent, for the assessment of respiratory health impacts and water contamination

La Soufrière, St Vincent, began an extrusive eruption on 27 December 2020. The lava dome was destroyed, along with much of the pre-existing 1979 dome, in explosive eruptions from 9 to 22 April 2021. Lava domes generate crystalline silica – inhalation of which can cause silicosis in occupational settings – which can become hazardous when dome material is incorporated into volcanic ash.La Soufrière
Authors
Claire J. Horwell, David Damby, Carol Stewart, Erouscilla Joseph, Jenni Barclay, Bridie V. Davies, Martin F Mangler, L G. Marvin, Jens Najorka, Sara Peek, Neil Tunstall

Forecasting the inundation of postfire debris flows

In the semi-arid regions of the western United States, postfire debris flows are typically runoff generated. The U.S. Geological Survey has been studying the mechanisms of postfire debris-flow initiation for multiple decades to generate operational models for forecasting the timing, location, and magnitude of postfire debris flows. Here we discuss challenges and progress for extending operational
Authors
Katherine R. Barnhart, Ryan P Jones, David L. George, Francis K. Rengers, Jason W. Kean