Skip to main content
U.S. flag

An official website of the United States government

Climate Research and Development Program

The Climate Research and Development (Climate R&D) Program strives to advance the understanding of the physical, chemical, and biological components of the Earth system, the causes and consequences of climate and land use change, and the vulnerability and resilience of the Earth system to such changes.

News

link

USGS EcoNews - Vol. 4 | Issue 3

link

Friday's Findings - July 14 2023

link

Earth Science Matters - Volume 16, Spring 2023

Publications

Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients

Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25–50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variatio
Authors
Mark Waldrop, Chris Chabot, Susanne Liebner, Sheila Holmes, Marcia Snyder, Martin L. Dillon, S Dudgeon, Thomas A. Douglas, Mary-Catherine Leewis, Katie M Walter- Anthony, Jack McFarland, Christopher D. Arp, Allen C. Bondurant, Neslihan Taş, Rachel Mackelprang

Regional streamflow drought forecasting in the Colorado River Basin using Deep Neural Network models

Process-based, large-scale (e.g., conterminous United States [CONUS]) hydrologic models have struggled to achieve reliable streamflow drought performance in arid regions and for low-flow periods. Deep learning has recently seen broad implementation in streamflow prediction and forecasting research projects throughout the world with performance often equaling or exceeding that of process-based mode
Authors
Scott Douglas Hamshaw, Phillip J. Goodling, Konrad Hafen, John C. Hammond, Ryan R. McShane, Roy Sando, Apoorva Ramesh Shastry, Caelan E. Simeone, David Watkins, Elaheh (Ellie) White, Michael Wieczorek

An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA

Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and
Authors
Paul D. Henne, Todd Hawbaker

Science

Regional Assessment of Drought Impacts on Soils (RADIS)

Soils are the foundation of terrestrial ecosystems. They provide critical services including supplying a substrate and the nutrients necessary for plant growth, retaining moisture from precipitation, filtering contaminants from percolating waters, and acting as a sink of carbon. Healthy soils are key to sustaining both human and ecosystem health. However, global- and regional-scale disturbances...
link

Regional Assessment of Drought Impacts on Soils (RADIS)

Soils are the foundation of terrestrial ecosystems. They provide critical services including supplying a substrate and the nutrients necessary for plant growth, retaining moisture from precipitation, filtering contaminants from percolating waters, and acting as a sink of carbon. Healthy soils are key to sustaining both human and ecosystem health. However, global- and regional-scale disturbances...
Learn More

Did we start the fire? Climate, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
link

Did we start the fire? Climate, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
Learn More

Response of plant, microbial, and soil functions to drought and fire in California

California is experiencing changes in precipitation and wildfire regimes. Longer, hotter fire seasons along with extremes in precipitation are expected to continue. Not only do these disturbances affect the productivity and resilience of ecosystems, they also directly impact human health and wellbeing. Soils hold an immense amount of our terrestrial carbon pool, and the microorganisms and minerals...
link

Response of plant, microbial, and soil functions to drought and fire in California

California is experiencing changes in precipitation and wildfire regimes. Longer, hotter fire seasons along with extremes in precipitation are expected to continue. Not only do these disturbances affect the productivity and resilience of ecosystems, they also directly impact human health and wellbeing. Soils hold an immense amount of our terrestrial carbon pool, and the microorganisms and minerals...
Learn More