Skip to main content
U.S. flag

An official website of the United States government

Hazards

Ocean hazard events, like tsunamis triggered by earthquakes and landslides, storm surges associated with hurricanes and extreme storms, oil and gas spills, and floods and associated watershed contaminants, affect the health and safety of our Nation's ocean and coastal communities and ecosystems. USGS scientists study the causes, distribution, and hazard potential of these events including

Filter Total Items: 103

Developing a USGS Digital Coral Growth Archive using Rotating X-Ray Computerized Tomography​

The newly developed USGS Coral Core Archive, housed at the Pacific and St. Petersburg Coastal and Marine Science Centers, contains approximately 500 coral reef cores from U.S. jurisdictions worldwide. This archive, is one of the largest coral archives in the world and provides historical context for coral-reef science studies, including crucial data for modern coral calcification rates, reef...
link

Developing a USGS Digital Coral Growth Archive using Rotating X-Ray Computerized Tomography​

The newly developed USGS Coral Core Archive, housed at the Pacific and St. Petersburg Coastal and Marine Science Centers, contains approximately 500 coral reef cores from U.S. jurisdictions worldwide. This archive, is one of the largest coral archives in the world and provides historical context for coral-reef science studies, including crucial data for modern coral calcification rates, reef...
Learn More

Alaska Flood Staffs

The U.S. Geological Survey (USGS) uses observations of flooding in communities to monitor hazard conditions and support research by the USGS and its partners into a variety of hazard processes in Alaska. Local observations of flooding at a flood staffs are used to document flood elevations, improve flood models, and support floodplain management decisions.
link

Alaska Flood Staffs

The U.S. Geological Survey (USGS) uses observations of flooding in communities to monitor hazard conditions and support research by the USGS and its partners into a variety of hazard processes in Alaska. Local observations of flooding at a flood staffs are used to document flood elevations, improve flood models, and support floodplain management decisions.
Learn More

USGS CoastCams

The U.S. Geological Survey (USGS) uses a nationwide network of coastal observing cameras, or CoastCams, to monitor coastal conditions in near real-time and support research by the USGS and its partners into a variety of coastal processes and hazards. The most recent CoastCam images are made publicly available within minutes of data collection and can be accessed using the links below or by...
link

USGS CoastCams

The U.S. Geological Survey (USGS) uses a nationwide network of coastal observing cameras, or CoastCams, to monitor coastal conditions in near real-time and support research by the USGS and its partners into a variety of coastal processes and hazards. The most recent CoastCam images are made publicly available within minutes of data collection and can be accessed using the links below or by...
Learn More

SENHIC Project Milestones and Meetings

As part of the Stakeholder Engagement for Natural Hazards Investigations in the Caribbean (SENHIC) project, the USGS team aims to connect with scientists who are conducting natural hazards research in the Caribbean, build relationships with natural hazards researchers based in the Caribbean and those specializing in the region, and develop a framework for collaborating with international partners.
link

SENHIC Project Milestones and Meetings

As part of the Stakeholder Engagement for Natural Hazards Investigations in the Caribbean (SENHIC) project, the USGS team aims to connect with scientists who are conducting natural hazards research in the Caribbean, build relationships with natural hazards researchers based in the Caribbean and those specializing in the region, and develop a framework for collaborating with international partners.
Learn More

Stakeholder Engagement for Natural Hazards Investigations in the Caribbean (SENHIC)

USGS staff are connecting with natural hazards researchers based in the Caribbean and those specializing in the region to find out which natural hazards are of primary concern, learn about their mitigation efforts, and explore the potential for research collaboration.
link

Stakeholder Engagement for Natural Hazards Investigations in the Caribbean (SENHIC)

USGS staff are connecting with natural hazards researchers based in the Caribbean and those specializing in the region to find out which natural hazards are of primary concern, learn about their mitigation efforts, and explore the potential for research collaboration.
Learn More

Digital Shoreline Analysis System (DSAS)

Software for calculating positional boundary change over time The Digital Shoreline Analysis System (DSAS) version 6 is a standalone application that calculates shoreline or boundary change over time. The GIS of a user’s choice is used to prepare the data for DSAS. Like previous versions, DSAS v.6 enables a user to calculate rate-of-change statistics from multiple historical shoreline positions...
link

Digital Shoreline Analysis System (DSAS)

Software for calculating positional boundary change over time The Digital Shoreline Analysis System (DSAS) version 6 is a standalone application that calculates shoreline or boundary change over time. The GIS of a user’s choice is used to prepare the data for DSAS. Like previous versions, DSAS v.6 enables a user to calculate rate-of-change statistics from multiple historical shoreline positions...
Learn More

USGS Law of the Sea

The USGS Law of the Sea project helps to determine the outer limits of the extended continental shelf (ECS) of the United States. The ECS is that portion of the continental shelf beyond 200 nautical miles. It is an important maritime zone that holds many resources and vital habitats for marine life. Its size may exceed one million square kilometers, encompassing areas in the Arctic, Atlantic...
link

USGS Law of the Sea

The USGS Law of the Sea project helps to determine the outer limits of the extended continental shelf (ECS) of the United States. The ECS is that portion of the continental shelf beyond 200 nautical miles. It is an important maritime zone that holds many resources and vital habitats for marine life. Its size may exceed one million square kilometers, encompassing areas in the Arctic, Atlantic...
Learn More

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
link

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
Learn More

Cascadia Subduction Zone Marine Geohazards

Societal Issue: Uncertainty related to rupture extent, slip distribution, and recurrence of past subduction megathrust earthquakes in the Pacific Northwest (northern CA, OR, WA, and southern BC) leads to ambiguity in earthquake and tsunami hazard assessments and hinders our ability to prepare for future events.
link

Cascadia Subduction Zone Marine Geohazards

Societal Issue: Uncertainty related to rupture extent, slip distribution, and recurrence of past subduction megathrust earthquakes in the Pacific Northwest (northern CA, OR, WA, and southern BC) leads to ambiguity in earthquake and tsunami hazard assessments and hinders our ability to prepare for future events.
Learn More

Sediment Transport in Coastal Environments

Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
link

Sediment Transport in Coastal Environments

Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
Learn More

Coastal Climate Impacts

The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...
link

Coastal Climate Impacts

The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...
Learn More

Dynamic coastlines along the western U.S.

The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.
link

Dynamic coastlines along the western U.S.

The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.
Learn More