Skip to main content
U.S. flag

An official website of the United States government

Earthquake Hazards Program

The USGS monitors and reports on earthquakes, assesses earthquake impacts and hazards, and conducts targeted research on the causes and effects of earthquakes. We undertake these activities as part of the larger National Earthquake Hazards Reduction Program (NEHRP), a four-agency partnership established by Congress.



Earthquakes can strike faster than a New York minute – What to do when the ground shakes...


New USGS map shows where damaging earthquakes are most likely to occur in US


Thirty years after the Northridge earthquake, new tools inform safety.


Incorporating intensity distance attenuation into PLUM ground-motion-based earthquake early warning in the United States: The APPLES configuration

We develop Attenuated ProPagation of Local Earthquake Shaking (APPLES), a new configuration for the United States West Coast version of the Propagation of Local Undamped Motion (PLUM) earthquake early warning (EEW) algorithm that incorporates attenuation into its ground-motion prediction procedures. Under APPLES, instead of using a fixed radius to forward-predict observed peak ground shaking to th
Jessie K. Saunders, Elizabeth S. Cochran, Julian Bunn, Annemarie S. Baltay, Sarah E. Minson, Colin T O'Rourke

Probabilistic seismic-hazard analysis for the western Kingdom of Saudi Arabia

We present a probabilistic seismic-hazard analysis (PSHA) for the west-central part of the Arabian Peninsula. Our study area includes the northern Harrat Rahat volcanic field and the nearby city of Al Madīnah, Kingdom of Saudi Arabia. This young, active volcanic field experienced one historical eruption in 1256 C.E. (654 in the year of the Hijra) that vented 20 to 22 kilometers (km) southeast of t

Ryota Kiuchi, Walter D. Mooney, Hani M. Zahran

Seismic hazard assessment for areas of volcanic activity in western Kingdom of Saudi Arabia

Earthquake swarms caused by volcanic activity, tectonic stresses, or industrial operations (oil and gas production) can pose considerable risk for nearby settlements. As a rule, a probabilistic seismic hazard assessment (PSHA) that is based on time-independent earthquakes does not take into account earthquake swarms because of their statistically time-dependent nature. We describe the technique an
Hani M. Zahran, Vladimir Sokolov, Ian C. F. Stewart