Filter Total Items: 2377
Incorporation of real-time earthquake magnitudes estimated via peak ground displacement scaling in the ShakeAlert Earthquake Early Warning system
The United States earthquake early warning (EEW) system, ShakeAlert®, currently employs two algorithms based on seismic data alone to characterize the earthquake source, reporting the weighted average of their magnitude estimates. Nonsaturating magnitude estimates derived in real time from Global Navigation Satellite System (GNSS) data using peak ground displacement (PGD) scaling relationships off
Effect of thermal and mechanical processes on hydraulic transmissivity evolution
Fracture healing is a critical component of enhanced geothermal systems, the earthquake cycle, and induced seismicity. Accordingly, there is significant interest in understanding the process of healing and its effects on fluid transport. The creation, reactivation, and sustainability of fracture networks depend on complex coupling among thermal, hydraulic, mechanical, and chemical processes. We us
Damage amplification during repetitive seismic waves in mechanically loaded rocks
Cycles of stress build-up and release are inherent to tectonically active planets. Such stress oscillations impart strain and damage, prompting mechanically loaded rocks and materials to fail. Here, we investigate, under uniaxial conditions, damage accumulation and weakening caused by time-dependent creep (at 60, 65, and 70% of the rocks’ expected failure stress) and repeating stress oscillations
Using seismic noise correlation to determine the shallow velocity structure of the Seattle basin, Washington
Cross-correlation waveforms of seismic noise in the Seattle basin, Washington, were analyzed to determine the group velocities of surface waves and constrain the shear-wave velocity (VS) for depths less than about 2 kilometers (km). Twenty broadband seismometers were deployed for about 3 weeks in three dense arrays separated by about 5 km, with minimum intra-array station spacing of about 0.5 km.
Regional-scale mapping of landscape response to extreme precipitation using repeat lidar and object-based image analysis
Extreme precipitation events may cause flooding, slope failure, erosion, deposition, and damage to infrastructure over a regional scale, but the impacts of these events are often difficult to fully characterize. Regional-scale landscape change occurred during an extreme rain event in June 2012 in northeastern Minnesota. Landscape change was documented by 8,000 km2 of airborne lidar data collected
An interactive viewer to improve operational aftershock forecasts
The U.S. Geological Survey (USGS) issues forecasts for aftershocks about 20 minutes after most earthquakes above M 5 in the United States and its territories, and updates these forecasts 75 times during the first year. Most of the forecasts are issued automatically, but some forecasts require manual intervention to maintain accuracy. It is important to identify the sequences whose forecasts will b
Evidence of active Quaternary deformation on the Great Valley fault system near Winters, northern California
The Great Valley fault system defines the tectonic boundary between the Coast Ranges and the Central Valley in California, is active throughout the Quaternary, and has been the source of several significant (M > 6) historic earthquakes, including the 1983 M 6.5 Coalinga earthquake and the 1892 Vacaville–Winters earthquake sequence. However, the locations and geometries of individual faults in the
The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow
Swarms are bursts of earthquakes without an obvious mainshock. Some have been observed to be associated with transient aseismic fault slip, while others are thought to be related to fluids. However, the association is rarely quantitative due to insufficient data quality. We use high-quality GPS/GNSS, InSAR, and relocated seismicity to study a swarm of >2,000 earthquakes which occurred between 30 S
Climatic influence on the expression of strike-slip faulting
Earthquakes on strike-slip faults are preserved in the geomorphic record by offset landforms that span a range of displacements, from small offsets created in the most recent earthquake (MRE) to large offsets that record cumulative slip from multiple prior events. An exponential decay in the number of large cumulative offsets has been observed on many faults, and a leading hypothesis is that clima
Probing the upper end of intracontinental earthquake magnitude: A prehistoric example from the Dzhungarian and Lepsy faults of Kazakhstan
The study of surface ruptures is key to understanding the earthquake occurrence of faults especially in the absence of historical events. We present a detailed analysis of geomorphic displacements along the Dzhungarian Fault, which straddles the border of China and Kazakhstan. We use digital elevation models derived from structure-from-motion analysis of Pléiades satellite imagery and drone imager
Physical properties of the crust influence aftershock locations
Aftershocks do not uniformly surround a mainshock, and instead occur in spatial clusters. Spatially variable physical properties of the crust may influence the spatial distribution of aftershocks. I study four aftershock sequences in Southern California (1992 Landers, 1999 Hector Mine, 2010 El Mayor—Cucapah, and 2019 Ridgecrest) to investigate which physical properties are spatially correlated wit
Lower seismogenic depth model of western U.S. Earthquakes
We present a model of the lower seismogenic depth of earthquakes in the western United States (WUS) estimated using the hypocentral depths of events M > 1, a crustal temperature model, and historical earthquake rupture depth models. Locations of earthquakes are from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021 supplemented with seismicity in southern Cali