Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2539

Evaluation of 2-D shear-wave velocity models and VS30at six strong-motion recording stations in southern California using multichannel analysis of surface waves and refraction tomography

To better understand the potential for amplified ground shaking at sites that house critical infrastructure, the U.S. Geological Survey (USGS) evaluated shear-wave velocities (VS) at six strong-motion recording stations in Southern California Edison facilities in southern California. We calculated VS30 (time-averaged shear-wave velocity in the upper 30 meters [m]), which is a parameter used in gro
Authors
Joanne H. Chan, Rufus D. Catchings, Mark R. Goldman, Coyn J. Criley, Robert R. Sickler

Preliminary implications of viscoelastic ray theory for anelastic seismic tomography models

The recent developments in general viscoelastic ray theory provide a rigorous mathematical framework for anelastic seismic tomography. They provide closed‐form solutions of forward ray‐tracing and simple inverse problems for anelastic horizontal and spherical layered media with material gradients. They provide ray‐tracing computation algorithms valid for all angles of incidence that account for ch
Authors
Roger D. Borcherdt

Performance-based earthquake early warning for tall buildings

The ShakeAlert Earthquake Early Warning (EEW) system aims to issue an advance warning to residents on the West Coast of the United States seconds before the ground shaking arrives, if the expected ground shaking exceeds a certain threshold. However, residents in tall buildings may experience much greater motion due to the dynamic response of the buildings. Therefore, there is an ongoing effort to
Authors
S. Farid Ghahari, Khachik Sargsyan, Grace Alexandra Parker, Dan Swensen, Mehmet Çelebi, Hamid Haddadi, Ertugrul Taciroglu

Summary of Creepmeter Data from 1980 to 2020—Measurements Spanning the Hayward, Calaveras, and San Andreas Faults in Northern and Central California

This report is an update to the presentation by Schulz (1989) introducing potential users to the creepmeter data collected between the publication of Schulz’s report and mid-2020. The creepmeter network monitors aseismic, surface slip at various locations on the Hayward, Calaveras, and San Andreas Faults in northern and central California. There are different designs of creepmeters and these are b
Authors
John Langbein, Roger G. Bilham, Hollice A. Snyder, Todd Ericksen

Distinct yet adjacent earthquake sequences near the Mendocino Triple Junction: 20 December 2021 Mw 6.1 and 6.0 Petrolia, and 20 December 2022 Mw 6.4 Ferndale

Two earthquake sequences occurred a year apart at the Mendocino Triple Junction in northern California: first the 20 December 2021 �w 6.1 and 6.0 Petrolia sequence, then the 20 December 2022 �w 6.4 Ferndale sequence. To delineate active faults and understand the relationship between these sequences, we applied an automated deep‐learning workflow to create enhanced and relocated earthquake catalogs
Authors
Clara Yoon, David R. Shelly

Data-driven adjustments for combined use of NGA-East hard-rock ground motion and site amplification models

Model development in the Next Generation Attenuation-East (NGA-East) project included two components developed concurrently and independently: (1) earthquake ground-motion models (GMMs) that predict the median and aleatory variability of various intensity measures conditioned on magnitude and distance, derived for a reference hard-rock site condition with an average shear-wave velocity in the uppe
Authors
Maria E. Ramos-Sepulveda, Jonathan P. Stewart, Grace Alexandra Parker, Morgan P. Moschetti, Eric M. Thompson, Scott J. Brandenberg, Youssef M A Hashash, Ellen M. Rathje

Induced seismicity strategic vision

Executive SummaryThe U.S. Geological Survey has a long history of contributions to the understanding and resolution of various scientific questions related to earthquakes associated with human activities, referred to as induced seismicity. Work started with the Rocky Mountain Arsenal studies in the 1960’s (Healy and others, 1968) when it was first discovered that fluid waste-disposal operations ca
Authors
Elizabeth S. Cochran, Justin L. Rubinstein, Andrew J. Barbour, J. Ole Kaven

Incorporating intensity distance attenuation into PLUM ground-motion-based earthquake early warning in the United States: The APPLES configuration

We develop Attenuated ProPagation of Local Earthquake Shaking (APPLES), a new configuration for the United States West Coast version of the Propagation of Local Undamped Motion (PLUM) earthquake early warning (EEW) algorithm that incorporates attenuation into its ground-motion prediction procedures. Under APPLES, instead of using a fixed radius to forward-predict observed peak ground shaking to th
Authors
Jessie K. Saunders, Elizabeth S. Cochran, Julian Bunn, Annemarie S. Baltay, Sarah E. Minson, Colin T O'Rourke

Fault activity in the San Gabriel Mountains, southern California, USA: Insights from landscape morphometrics, erosion rates, and fault-slip rates

Many studies use landscape form to determine spatial patterns of tectonic deformation, and these are particularly effective when paired with independent measures of rock uplift and erosion. Here, we use morphometric analyses and 10Be catchment-averaged erosion rates, together with reverse slip rates from the Sierra Madre−Cucamonga fault zone, to reveal patterns in uplift, erosion, and fault activi
Authors
Andrew Meredith, Devin McPhillips

Complex landslide patterns explained by local intra-unit variability of stratigraphy and structure: Case study in the Tyee Formation, Oregon, USA

Lithology and geologic structure are important controls on landslide susceptibility and are incorporated into many regional landslide hazard models. Typically, metrics for mapped geologic units are used as model input variables and a single set of values for material strength are assumed, regardless of spatial heterogeneities that may exist within a map unit. Here we describe how differences in be
Authors
Sean Richard LaHusen, Alex R. R. Grant

Probabilistic seismic-hazard analysis for the western Kingdom of Saudi Arabia

We present a probabilistic seismic-hazard analysis (PSHA) for the west-central part of the Arabian Peninsula. Our study area includes the northern Harrat Rahat volcanic field and the nearby city of Al Madīnah, Kingdom of Saudi Arabia. This young, active volcanic field experienced one historical eruption in 1256 C.E. (654 in the year of the Hijra) that vented 20 to 22 kilometers (km) southeast of t

Authors
Ryota Kiuchi, Walter D. Mooney, Hani M. Zahran

Seismic hazard assessment for areas of volcanic activity in western Kingdom of Saudi Arabia

Earthquake swarms caused by volcanic activity, tectonic stresses, or industrial operations (oil and gas production) can pose considerable risk for nearby settlements. As a rule, a probabilistic seismic hazard assessment (PSHA) that is based on time-independent earthquakes does not take into account earthquake swarms because of their statistically time-dependent nature. We describe the technique an
Authors
Hani M. Zahran, Vladimir Sokolov, Ian C. F. Stewart