Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2539

Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model

This report describes geodetic and geologic information used to constrain deformation models of the 2023 update to the National Seismic Hazard Model (NSHM), a set of deformation models to interpret these data, and their implications for earthquake rates in the western United States. Recent updates provide a much larger data set of Global Positioning System crustal velocities than used in the 2014
Authors
Fred Pollitz, Eileen L. Evans, Edward H. Field, Alexandra Elise Hatem, Elizabeth H. Hearn, Kaj M Johnson, Jessica R. Murray, Peter M. Powers, Zheng-Kang Shen, Crystal Wespestad, Yuehua Zeng

GPS velocity field of the Western United States for the 2023 National Seismic Hazard Model update

Global Positioning System (GPS) velocity solutions of the western United States (WUS) are compiled from several sources of field networks and data processing centers for the 2023 U.S. Geological Survey National Seismic Hazard Model (NSHM). These solutions include both survey and continuous‐mode GPS velocity measurements. I follow the data processing procedure of Parsons et al. (2013) for the Unifo
Authors
Yuehua Zeng

Viscoelastic fault-based model of crustal deformation for the 2023 update to the U.S. National Seismic Hazard Model

The 2023 update to the National Seismic Hazard (NSHM) model is informed by several deformation models that furnish geodetically estimated fault slip rates. Here I describe a fault‐based model that permits estimation of long‐term slip rates on discrete faults and the distribution of off‐fault moment release. It is based on quantification of the earthquake cycle on a viscoelastic model of the seismo
Authors
Fred Pollitz

Earthquakes in the shadows: Why aftershocks occur at surprising locations

For decades there has been a debate about the relative effects of dynamic versus static stress triggering of aftershocks. According to the static Coulomb stress change hypothesis, aftershocks should not occur in stress shadows—regions where static Coulomb stress has been reduced. We show that static stress shadows substantially influence aftershock occurrence following three M ≥ 7 California mains
Authors
Jeanne L. Hardebeck, Ruth A. Harris

Using machine learning techniques with incomplete polarity datasets to improve earthquake focal mechanism determination

Earthquake focal mechanisms are traditionally produced using P‐wave first‐motion polarities and commonly require well‐recorded seismicity. A recent approach that is less dependent on high signal‐to‐noise exploits similar waveforms to produce relative polarity measurements between earthquake pairs. Utilizing these relative polarity measurements, it is possible to produce composite focal mechanisms
Authors
Robert Skoumal, David R. Shelly, Jeanne L. Hardebeck

Impact of sedimentary basins on Green’s functions for static slip inversion

Earthquakes often occur in regions with complex material structure, such as sedimentary basins or mantle wedges. However, the majority of co-seismic modelling studies assume a simplified, often homogeneous elastic structure in order to expedite the process of model construction and speed up calculations. These co-seismic forward models are used to produce Green’s functions for finite-fault inversi
Authors
Leah Langer, Stephen Beller, Evan Tyler Hirakawa, Jeroen Tromp

Revised earthquake recurrence intervals in California, USA: New paleoseismic sites and application of event likelihoods

Recurrence intervals for ground rupturing earthquakes are critical data for assessing seismic hazard. Recurrence intervals are presented here for 38 paleoseismic sites in California. Eleven of these include new or updated data; the remainder use data previously included in the Unified California Earthquake Rupture Forecast Version 3 (UCERF3). The methods and results are consistent with UCERF3. In
Authors
Devin McPhillips

Quantifying modeling uncertainty in simplified beam models for building response prediction

The use of simple models for response prediction of building structures is preferred in earthquake engineering for risk evaluations at regional scales, as they make computational studies more feasible. The primary impediment in their gainful use presently is the lack of viable methods for quantifying (and reducing upon) the modeling errors/uncertainties they bear. This study presents a Bayesian ca
Authors
S. Farid Ghahari, Khachik Sargsyan, Mehmet Çelebi, Ertugrul Taciroglu

Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023

As part of the U.S. National Seismic Hazard Model (NSHM) update planned for 2023, two databases were prepared to more completely represent Quaternary-active faulting across the western United States: the NSHM23 fault sections database (FSD) and earthquake geology database (EQGeoDB). In prior iterations of NSHM, fault sections were included only if a field-measurement-derived slip rate was estimate
Authors
Alexandra Elise Hatem, Camille Marie Collett, Richard W. Briggs, Ryan D. Gold, Stephen J. Angster, Edward H. Field, Peter M. Powers

Stress heterogeneity as a driver of aseismic slip during the 2011 Prague, Oklahoma aftershock sequence

The interaction of aseismic and seismic slip before and after an earthquake is fundamental for both earthquake nucleation and postseismic stress relaxation. However, it can be difficult to determine where and when aseismic slip occurs within the seismogenic zone because geodetic techniques are limited to detecting moderate to large slip amplitudes or long duration small slip amplitudes. Here, we u
Authors
Kristina Okamoto, Heather Savage, Elizabeth S. Cochran, Katie M. Keranen

Brittle faulting at elevated temperature and vanishing effective stress

If brittle fault strength depends only on friction, slip instability is discouraged at low effective normal stress, σ. Stress drop and the critical stiffness necessary for unstable sliding both vanish with σ; small earthquakes cannot occur. Very low σ is inferred in the source region of low-frequency earthquakes (LFEs) on the San Andreas fault (SAF). Moreover, if pore pressure, p, is undrained at
Authors
Nicholas M. Beeler