The biologic carbon sequestration assessment program (LandCarbon) investigates ecosystem carbon cycle problems and develops carbon management science and monitoring methods.
Specifically, LandCarbon is focused on the following research areas:
- Synthesize and assess current and potential carbon balance (stocks and fluxes) in major terrestrial and aquatic ecosystems
- Evaluate the effects of both natural and anthropogenic driving forces on ecosystem carbon balance and greenhouse gas fluxes
- Develop carbon monitoring methods and capabilities
- Conduct research and provide science support for increasing carbon sequestration in land management policies and practices
Since 2010, the USGS has:
- Released a methodology for the national assessment of biologic carbon sequestration (USGS Scientific Investigations Report 5233)
- Completed the assessment for the conterminous United States divided into three regional reports (USGS Professional Papers 1787- Great Plains, 1797- Western US, and 1804- Eastern US), and Alaska and Hawaii separately
- Developed and released a LandCarbon website for data distribution and visualization.
Additionally, a number of research papers have been published in leading journals by USGS and academic scientists supported by the program.
Going forward, the new focus of the program is in two priority areas:
- Synthesis and assessment linking ecosystem carbon balance with natural and anthropogenic processes as well as carbon management
- Carbon sequestration application studies in support of Department of the Interior land management decision making
Activities:
Aquatic Systems
The USGS investigates the amount of carbon burial, emissions, and export taking place in the aquatic ecosystems of the United States. Data analysis and modeling are used to identify the controls on greenhouse gas emissions from lakes and rivers, as well as the magnitude of carbon burial in sediments. Linkages between land use and carbon cycling in nearby aquatic habitats are being characterized in order to understand the effects of human activity such as agriculture and development on aquatic carbon cycling. Carbon export to the coastal ocean is also being quantified, and ecosystem models will describe the movement of continental carbon exports through the coastal food web.
Inland aquatic ecosystems (rivers, lakes, ponds, and reservoirs) play several important roles in the carbon cycle. Carbon that has been fixed via terrestrial primary production and processed in the soil is exported to surface water as both organic and mineral carbon compounds. In the aquatic environment, organic carbon compounds are respired (converted to CO2) by bacteria. This process can lead to a greater concentration of CO2 in the water than in the air (supersaturation), which results in "degassing", or emission of CO2 to the atmosphere. At the same time, plants and algae in aquatic ecosystems take up CO2 for photosynthesis. As it moves through the food web, most of this carbon is ultimately converted back to CO2 by respiration, but some of it can be buried in sediments. Anaerobic decomposition of carbon buried in sediments can create CH4, another greenhouse gas, which can also escape to the atmosphere. River systems transport carbon, originating from both terrestrial and aquatic systems, to the coastal ocean, where it is then further processed (emitted as greenhouse gases, buried in sediments, or transported offshore).
Carbon Sequestration Assessment
According to the newly completed the 2nd State of Carbon Cycle Report (), Terrestrial and aquatic ecosystems in the United States are a significant carbon sinks, taking up approximately a quarter of the nation’s CO2 emissions. The ecosystem carbon sink can be highly variable over space and time due to natural disturbances and land use decisions (Goodale and others, 2002)). Fire, for example, is a disturbance that affects a forest's carbon storage and has effects of both releasing CO2 and CH4 back into the atmosphere and strengthening a forest ecosystem's ability to increase sequestration over the long-term. USGS conducts synthesis and assessment of carbon sequestration processes and long-term balances of major ecosystems including forests, croplands, grasslands, and wetlands in relation to both natural and anthropogenic driving forces.
Ecosystem Disturbances – Wildland Fire
Ecosystem disturbance modeling and emission estimation produces spatially-explicit forecasts of fire patterns, and the resulting greenhouse gas emissions for U.S biomes. At the heart of the approach is a series of statistical and process-based models, coded in C++, that simulate processes of fire ignition, spread, and emissions. Patterns of historic ignitions are characterized using logistic regressions that relate ignition location to daily fuel moisture conditions, as well as, vegetation type and urban extent. These ignition models are used to determine when and where ignitions are located under stable or changing climate scenarios. Once ignitions are located, the area burned is determined by allowing each ignition to spread using the minimum travel time algorithm. After fire spread is complete, emissions are calculated using the FOFEM and CONSUME models.
Vegetation, fuels, daily weather, and fuel moisture data are critical to disturbance simulations. Vegetation and fuels data are provided by the LANDFIRE project. The daily weather data we use have 12 km spatial resolution and span from 1950 to 2010. For future climate-change scenarios, we randomly resample annual sequences of historic daily weather and rescale them to match the monthly means provided by downscaled climate-change forecasts. Fuel moistures and fire behavior indices are calculated for both historic and forecast daily weather using the National Fire Danger Rating System and then used as predictor variables for ignition locations, fire spread, and fire emissions.
Future Scenarios and land use modeling
To study potential changes in land use, land cover and land management in the future United States, USGS has incorporated probable scenarios as defined by the Intergovernmental Panel on Climate Change (IPCC) in its fourth and fifth assessment reports (AR4 and AR5), which lists major driving forces of future emissions, including changes in demographic, technological and economic developments. To be able to incorporate these scenario assumptions into ongoing research and to produce nationally and regionally unique future potential land use and land cover scenarios, data on historical land-cover change from USGS and information derived from a global integrated assessment model are used in conjunction with expert analysis to 1) downscale scenario narrative storylines to national and sub-national scales, and 2) develop quantitative regional projections of LULC change for major land-use sectors of the conterminous United States. Results of this process are a set of quantitative future scenarios for specific land use and land cover classes, unique at both national and regional scales.
There are large uncertainties in how land and climate systems will evolve and interact to shape future ecosystem carbon dynamics. To address this uncertainty, we developed the Land-Use and Carbon Scenario Simulator (LUCAS) to track changes in land use, land cover, land management, and disturbance, and their impact on ecosystem carbon storage and flux. The LUCAS model combines a state-and-transition simulation model (STSM) for modeling land-change with a stock and flow model for modeling carbon dynamics, within a scenario-based framework. These two models were developed in conjunction within the ST-SIM modeling environment to provide a complete package for testing a range of future scenarios of land-use change and their impacts on carbon dynamics. Land-use change scenarios developed from the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES), and Representative Concentration Pathways (RCPs), as well as scenarios developed from historical land-use change datasets that include a range of mitigation and adaptation policies can be applied in the model.
Below are data releases associated with this project.
Soil flux (CO2, CH4), soil temperature, and soil moisture measurements at the Great Dismal Swamp National Wildlife Refuge (2015 - 2017)
Tidal marsh biomass field plot and remote sensing datasets for six regions in the conterminous United States
Organic matter decomposition along coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in Southeastern U.S.A. (2010-2011)
Below are publications associated with this project.
Trends of litter decomposition and soil organic matter stocks across forested swamp environments of the southeastern US
Integrating hydrology and biogeochemistry across frozen landscapes
Employing an ecosystem services framework to deliver decision ready science
Wind sheltering impacts on land-atmosphere fluxes over fens
Dissolved organic carbon turnover in permafrost-influenced watersheds of interior Alaska: Molecular insights and the priming effect
Scenarios of climate adaptation potential on protected working lands from management of soils
Evaluating k-nearest neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in northeast China
Carbon chemistry of intact versus chronically drained peatlands in the southeastern USA
A mosaic of estuarine habitat types with prey resources from multiple environmental strata supports a diversified foraging portfolio for juvenile Chinook salmon
A 3-year in-situ measurement of CO2 efflux in coastal wetlands: Understanding carbon loss through ecosystem respiration and its partitioning
FLUXNET-CH4 synthesis activity: Objectives, observations, and future directions
Carbon dioxide emissions and methane flux from forested wetland soils of the Great Dismal Swamp, USA
- Overview
The biologic carbon sequestration assessment program (LandCarbon) investigates ecosystem carbon cycle problems and develops carbon management science and monitoring methods.
Specifically, LandCarbon is focused on the following research areas:
- Synthesize and assess current and potential carbon balance (stocks and fluxes) in major terrestrial and aquatic ecosystems
- Evaluate the effects of both natural and anthropogenic driving forces on ecosystem carbon balance and greenhouse gas fluxes
- Develop carbon monitoring methods and capabilities
- Conduct research and provide science support for increasing carbon sequestration in land management policies and practices
Since 2010, the USGS has:
- Released a methodology for the national assessment of biologic carbon sequestration (USGS Scientific Investigations Report 5233)
- Completed the assessment for the conterminous United States divided into three regional reports (USGS Professional Papers 1787- Great Plains, 1797- Western US, and 1804- Eastern US), and Alaska and Hawaii separately
- Developed and released a LandCarbon website for data distribution and visualization.
Additionally, a number of research papers have been published in leading journals by USGS and academic scientists supported by the program.
Going forward, the new focus of the program is in two priority areas:
- Synthesis and assessment linking ecosystem carbon balance with natural and anthropogenic processes as well as carbon management
- Carbon sequestration application studies in support of Department of the Interior land management decision making
Activities:
Aquatic Systems
The USGS investigates the amount of carbon burial, emissions, and export taking place in the aquatic ecosystems of the United States. Data analysis and modeling are used to identify the controls on greenhouse gas emissions from lakes and rivers, as well as the magnitude of carbon burial in sediments. Linkages between land use and carbon cycling in nearby aquatic habitats are being characterized in order to understand the effects of human activity such as agriculture and development on aquatic carbon cycling. Carbon export to the coastal ocean is also being quantified, and ecosystem models will describe the movement of continental carbon exports through the coastal food web.Inland aquatic ecosystems (rivers, lakes, ponds, and reservoirs) play several important roles in the carbon cycle. Carbon that has been fixed via terrestrial primary production and processed in the soil is exported to surface water as both organic and mineral carbon compounds. In the aquatic environment, organic carbon compounds are respired (converted to CO2) by bacteria. This process can lead to a greater concentration of CO2 in the water than in the air (supersaturation), which results in "degassing", or emission of CO2 to the atmosphere. At the same time, plants and algae in aquatic ecosystems take up CO2 for photosynthesis. As it moves through the food web, most of this carbon is ultimately converted back to CO2 by respiration, but some of it can be buried in sediments. Anaerobic decomposition of carbon buried in sediments can create CH4, another greenhouse gas, which can also escape to the atmosphere. River systems transport carbon, originating from both terrestrial and aquatic systems, to the coastal ocean, where it is then further processed (emitted as greenhouse gases, buried in sediments, or transported offshore).
Carbon Sequestration Assessment
According to the newly completed the 2nd State of Carbon Cycle Report (), Terrestrial and aquatic ecosystems in the United States are a significant carbon sinks, taking up approximately a quarter of the nation’s CO2 emissions. The ecosystem carbon sink can be highly variable over space and time due to natural disturbances and land use decisions (Goodale and others, 2002)). Fire, for example, is a disturbance that affects a forest's carbon storage and has effects of both releasing CO2 and CH4 back into the atmosphere and strengthening a forest ecosystem's ability to increase sequestration over the long-term. USGS conducts synthesis and assessment of carbon sequestration processes and long-term balances of major ecosystems including forests, croplands, grasslands, and wetlands in relation to both natural and anthropogenic driving forces.Ecosystem Disturbances – Wildland Fire
Ecosystem disturbance modeling and emission estimation produces spatially-explicit forecasts of fire patterns, and the resulting greenhouse gas emissions for U.S biomes. At the heart of the approach is a series of statistical and process-based models, coded in C++, that simulate processes of fire ignition, spread, and emissions. Patterns of historic ignitions are characterized using logistic regressions that relate ignition location to daily fuel moisture conditions, as well as, vegetation type and urban extent. These ignition models are used to determine when and where ignitions are located under stable or changing climate scenarios. Once ignitions are located, the area burned is determined by allowing each ignition to spread using the minimum travel time algorithm. After fire spread is complete, emissions are calculated using the FOFEM and CONSUME models.Vegetation, fuels, daily weather, and fuel moisture data are critical to disturbance simulations. Vegetation and fuels data are provided by the LANDFIRE project. The daily weather data we use have 12 km spatial resolution and span from 1950 to 2010. For future climate-change scenarios, we randomly resample annual sequences of historic daily weather and rescale them to match the monthly means provided by downscaled climate-change forecasts. Fuel moistures and fire behavior indices are calculated for both historic and forecast daily weather using the National Fire Danger Rating System and then used as predictor variables for ignition locations, fire spread, and fire emissions.
Future Scenarios and land use modeling
To study potential changes in land use, land cover and land management in the future United States, USGS has incorporated probable scenarios as defined by the Intergovernmental Panel on Climate Change (IPCC) in its fourth and fifth assessment reports (AR4 and AR5), which lists major driving forces of future emissions, including changes in demographic, technological and economic developments. To be able to incorporate these scenario assumptions into ongoing research and to produce nationally and regionally unique future potential land use and land cover scenarios, data on historical land-cover change from USGS and information derived from a global integrated assessment model are used in conjunction with expert analysis to 1) downscale scenario narrative storylines to national and sub-national scales, and 2) develop quantitative regional projections of LULC change for major land-use sectors of the conterminous United States. Results of this process are a set of quantitative future scenarios for specific land use and land cover classes, unique at both national and regional scales.There are large uncertainties in how land and climate systems will evolve and interact to shape future ecosystem carbon dynamics. To address this uncertainty, we developed the Land-Use and Carbon Scenario Simulator (LUCAS) to track changes in land use, land cover, land management, and disturbance, and their impact on ecosystem carbon storage and flux. The LUCAS model combines a state-and-transition simulation model (STSM) for modeling land-change with a stock and flow model for modeling carbon dynamics, within a scenario-based framework. These two models were developed in conjunction within the ST-SIM modeling environment to provide a complete package for testing a range of future scenarios of land-use change and their impacts on carbon dynamics. Land-use change scenarios developed from the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES), and Representative Concentration Pathways (RCPs), as well as scenarios developed from historical land-use change datasets that include a range of mitigation and adaptation policies can be applied in the model.
- Data
Below are data releases associated with this project.
Soil flux (CO2, CH4), soil temperature, and soil moisture measurements at the Great Dismal Swamp National Wildlife Refuge (2015 - 2017)
Data were obtained to assess how forest type, hydrologic conditions and management strategies affect GHG soil flux at the Great Dismal Swamp National Wildlife Refuge. The goal is to relate changes in GHG fluxes to shifts in refuge hydrologic management on forested peatlands. We identified nine study site locations, representing three mature vegetation communities [Atlantic White Cedar (desired comTidal marsh biomass field plot and remote sensing datasets for six regions in the conterminous United States
Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United StatOrganic matter decomposition along coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in Southeastern U.S.A. (2010-2011)
Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. - Publications
Below are publications associated with this project.
Filter Total Items: 145Trends of litter decomposition and soil organic matter stocks across forested swamp environments of the southeastern US
A common idea in the discussion of soil carbon processes is that litter decomposition rates and soil carbon stocks are inversely related. To test this overall hypothesis, simultaneous studies were conducted of the relationship of environmental gradients to leaf and wood decomposition, buried cloth decomposition and percent soil organic matter in Taxodium distichum swamps across the Mississippi RivIntegrating hydrology and biogeochemistry across frozen landscapes
Research has traditionally focused on atmospheric release of carbon from thawing permafrost, yet overlooked waterborne release pathways likely contribute significantly, especially in a warming Arctic. To address this knowledge gap and better constrain the fate of carbon in the North, we recommend inter-disciplinary efforts bridging physical, chemical and computational research.Employing an ecosystem services framework to deliver decision ready science
Public land managers have limited information to allow for the integration and balancing of multiple objectives in land management decisions including the social (cultural and health), economic (monetary and nonmonetary), and environmental aspects. In this article, we document an approach to consider the many facets of decision making by incorporating them into a decision context using an ecosystWind sheltering impacts on land-atmosphere fluxes over fens
Wetlands and their ability to mitigate climate change motivates restorative and protective action; however, scientific understanding of land-atmosphere interactions is restricted by our limited continuous observations of gaseous fluxes. Many wetlands are small in spatial scale and embedded in forested landscapes. Yet, little is known about how the relative sheltering of forests affects net carbonDissolved organic carbon turnover in permafrost-influenced watersheds of interior Alaska: Molecular insights and the priming effect
Increased permafrost thaw due to climate change in northern high-latitudes has prompted concern over impacts on soil and stream biogeochemistry that affect the fate of dissolved organic carbon (DOC). Few studies to-date have examined the link between molecular composition and biolability of dissolved organic matter (DOM) mobilized from different soil horizons despite its importance in understandinScenarios of climate adaptation potential on protected working lands from management of soils
Management of protected lands may enhance ecosystem services that conservation programs were designed to protect. Practices that build soil organic matter (SOM) on agricultural lands also increase soil water holding capacity, potentially reducing climatic water deficit (CWD), increasing actual evapotranspiration (AET) and increasing groundwater recharge (RCH). We developed nine spatially-explicitEvaluating k-nearest neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in northeast China
Quantifying spatially explicit or pixel-level aboveground forest biomass (AFB) across large regions is critical for measuring forest carbon sequestration capacity, assessing forest carbon balance, and revealing changes in the structure and function of forest ecosystems. When AFB is measured at the species level using widely available remote sensing data, regional changes in forest composition canCarbon chemistry of intact versus chronically drained peatlands in the southeastern USA
The Great Dismal Swamp (GDS) is a large temperate swamp in Virginia/North Carolina with peat soils historically resistant to microbial decomposition. However, this peatland has been subject to ~200 years of disturbance during which extensive drainage, fire suppression, and wide-spread logging have increased decomposition and dramatically decreased the distribution of Atlantic white cedar (AWC). ThA mosaic of estuarine habitat types with prey resources from multiple environmental strata supports a diversified foraging portfolio for juvenile Chinook salmon
Estuaries provide vital nursery habitat for threatened Chinook salmon (Oncorhynchus tshawytscha) by promoting an ecological portfolio effect, whereby multiple habitat types and environmental strata maximize foraging opportunities for out-migrating salmon by varying the abundance and composition of prey through space and time. To study this portfolio effect, we evaluated the foraging capacity of fiA 3-year in-situ measurement of CO2 efflux in coastal wetlands: Understanding carbon loss through ecosystem respiration and its partitioning
Understanding the link between ecosystem respiration (Reco) and its influential factors is necessary to evaluate the sources of gaseous carbon loss in coastal wetlands. Seablite (Suaeda salsa Pall.) is the main vegetation type pioneering temperate coastal wetlands in northeast China, and is generally an understudied wetland type. To evaluate the influence of environmental factors on Reco, a multi-FLUXNET-CH4 synthesis activity: Objectives, observations, and future directions
This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurCarbon dioxide emissions and methane flux from forested wetland soils of the Great Dismal Swamp, USA
The Great Dismal Swamp, a freshwater forested peatland, has accumulated massive amounts of soil carbon since the postglacial period. Logging and draining have severely altered the hydrology and forest composition, leading to drier soils, accelerated oxidation, and vulnerability to disturbance. The once dominant Atlantic white cedar, cypress, and pocosin forest types are now fragmented, resulting i