Skip to main content
U.S. flag

An official website of the United States government

Formation of Fe-Mn crusts within a continental margin environment

May 26, 2017

This study examines Fe-Mn crusts that form on seamounts along the California continental-margin (CCM), within the United States 200 nautical mile exclusive economic zone. The study area extends from approximately 30° to 38° North latitudes and from 117° to 126° West longitudes. The area of study is a tectonically active northeast Pacific plate boundary region and is also part of the North Pacific Subtropical Gyre with currents dominated by the California Current System. Upwelling of nutrient-rich water results in high primary productivity that produces a pronounced oxygen minimum zone. Hydrogenetic Fe-Mn crusts forming along the CCM show distinct chemical and mineral compositions compared to open-ocean crusts. On average, CCM crusts contain more Fe relative to Mn than open-ocean Pacific crusts. The continental shelf and slope release both Fe and Mn under low-oxygen conditions. Silica is also enriched relative to Al compared to open-ocean crusts. This is due to the North Pacific silica plume and enrichment of Si along the path of deep-water circulation, resulting in Si enrichment in bottom and intermediate waters of the eastern Pacific.

The CCM Fe-Mn crusts have a higher percentage of birnessite than open-ocean crusts, reflecting lower dissolved seawater oxygen that results from the intense coastal upwelling and proximity to zones of continental slope pore-water anoxia. Carbonate fluorapatite (CFA) is not present and CCM crusts do not show evidence of phosphatization, even in the older sections. The mineralogy indicates a suboxic environment under which birnessite forms, but in which pH is not high enough to facilitate CFA deposition. Growth rates of CCM crusts generally increase with increasing water depth, likely due to deep-water Fe sources mobilized from reduced shelf and slope sediments.

Many elements of economic interest including Mn, Co, Ni, Cu, W, and Te have slightly or significantly lower concentrations in CCM crusts relative to crusts from the Pacific Prime Crust Zone and other open-ocean basins. However, concentrations of total rare earth elements and yttrium average only slightly lower contents and in the future may be a strategic resource for the U.S.

Publication Year 2017
Title Formation of Fe-Mn crusts within a continental margin environment
DOI 10.1016/j.oregeorev.2016.09.010
Authors Tracey A. Conrad, James R. Hein, Adina Paytan, David A. Clague
Publication Type Article
Publication Subtype Journal Article
Series Title Ore Geology Reviews
Index ID 70187974
Record Source USGS Publications Warehouse
USGS Organization Pacific Coastal and Marine Science Center