Skip to main content
U.S. flag

An official website of the United States government

Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake

January 1, 2007

A coupled 1D physical-biological model of Crater Lake is presented. The model simulates the seasonal evolution of two functional phytoplankton groups, total chlorophyll, and zooplankton in good quantitative agreement with observations from a 10-year monitoring study. During the stratified period in summer and early fall the model displays a marked vertical structure: the phytoplankton biomass of the functional group 1, which represents diatoms and dinoflagellates, has its highest concentration in the upper 40 m; the phytoplankton biomass of group 2, which represents chlorophyta, chrysophyta, cryptomonads and cyanobacteria, has its highest concentrations between 50 and 80 m, and phytoplankton chlorophyll has its maximum at 120 m depth. A similar vertical structure is a reoccurring feature in the available data. In the model the key process allowing a vertical separation between biomass and chlorophyll is photoacclimation. Vertical light attenuation (i.e., water clarity) and the physiological ability of phytoplankton to increase their cellular chlorophyll-to-biomass ratio are ultimately determining the location of the chlorophyll maximum. The location of the particle maxima on the other hand is determined by the balance between growth and losses and occurs where growth and losses equal. The vertical particle flux simulated by our model agrees well with flux measurements from a sediment trap. This motivated us to revisit a previously published study by Dymond et al. (1996). Dymond et al. used a box model to estimate the vertical particle flux and found a discrepancy by a factor 2.5-10 between their model-derived flux and measured fluxes from a sediment trap. Their box model neglected the exchange flux of dissolved and suspended organic matter, which, as our model and available data suggests is significant for the vertical exchange of nitrogen. Adjustment of Dymond et al.'s assumptions to account for dissolved and suspended nitrogen yields a flux estimate that is consistent with sediment trap measurements and our model. ?? 2007 Springer Science+Business Media B.V.

Publication Year 2007
Title Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake
DOI 10.1007/s10750-006-2615-5
Authors K. Fennel, R. Collier, G. Larson, G. Crawford, E. Boss
Publication Type Article
Publication Subtype Journal Article
Series Title Hydrobiologia
Index ID 70031842
Record Source USGS Publications Warehouse
USGS Organization Forest and Rangeland Ecosystem Science Center